Browsing by Author "Teaford, MF"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Are we looking for loads in all the right places? New research directions for studying the masticatory apparatus of New World monkeys.(Anat Rec (Hoboken), 2011-12) Vinyard, CJ; Taylor, AB; Teaford, MF; Glander, KE; Ravosa, MJ; Rossie, JB; Ryan, TM; Williams, SHNew World monkeys display a wide range of masticatory apparatus morphologies related to their diverse diets and feeding strategies. While primatologists have completed many studies of the platyrrhine masticatory apparatus, particularly morphometric analyses, we collectively acknowledge key shortcomings in our understanding of the function and evolution of the platyrrhine feeding apparatus. Our goal in this contribution is to review several recent, and in most cases ongoing, efforts to address some of the deficits in our knowledge of how the platyrrhine skull is loaded during feeding. We specifically consider three broad research areas: (1) in vivo physiological studies documenting mandibular bone strains during feeding, (2) metric analyses assessing musculoskeletal functional morphology and performance, as well as (3) the initiation of a physiological ecology of feeding that measures in vivo masticatory mechanics in a natural environment. We draw several conclusions from these brief reviews. First, we need better documentation of in vivo strain patterns in the platyrrhine skull during feeding given their empirical role in developing adaptive hypotheses explaining masticatory apparatus form. Second, the greater accuracy of new technologies, such as CT scanning, will allow us to better describe the functional consequences of jaw form. Third, performance studies are generally lacking for platyrrhine jaws, muscles, and teeth and offer exciting avenues for linking form to feeding behavior and diet. Finally, attempts to bridge distinct research agendas, such as collecting in vivo physiological data during feeding in natural environments, present some of the greatest opportunities for novel insights into platyrrhine feeding biology.Item Open Access Dental microwear and diet in a wild population of mantled howlers (Alouatta palliata)(Adaptive Radiations of Neotropical Primates, 1996) Teaford, MF; Glander, KEItem Open Access Dental microwear in live, wild-trapped Alouatta palliata from Costa Rica.(Am J Phys Anthropol, 1991-07) Teaford, MF; Glander, KEOne problem with dental microwear analyses of museum material is that investigators can never be sure of the diets of the animals in question. An obvious solution to this problem is to work with live animals. Recent work with laboratory primates has shown that high resolution dental impressions can be obtained from live animals. The purpose of this study was to use similar methods to begin to document rates and patterns of dental microwear for primates in the wild. Thirty-three Alouatta palliata were captured during the wet season at Hacienda La Pacifica near Canas, Costa Rica. Dental impressions were taken and epoxy casts of the teeth were prepared using the methods of Teaford and Oyen (1989a). Scanning electron micrographs were taken of the left mandibular second molars at magnifications of 200x and 500x. Lower magnification images were used to calculate rates of wear, and higher magnification images were used to measure the size and shape of microwear features. Results indicate that, while basic patterns of dental microwear are similar in museum samples and samples of live, wild-trapped animals of the same species, ecological differences between collection locales may lead to significant intraspecific differences in dental microwear. More importantly, rates of microwear provide the first direct evidence of differences in molar use between monkeys and humans.Item Open Access Dust accumulation in the canopy: a potential cause of dental microwear in primates.(Am J Phys Anthropol, 1995-06) Ungar, PS; Teaford, MF; Glander, KE; Pastor, RFDental microwear researchers consider exogenous grit or dust to be an important cause of microscopic wear on primate teeth. No study to date has examined the accumulation of such abrasives on foods eaten by primates in the forest. This investigation introduces a method to collect dust at various heights in the canopy. Results from dust collection studies conducted at the primate research stations at Ketambe in Indonesia, and Hacienda La Pacifica in Costa Rica indicate that 1) grit collects throughout the canopy in both open country and tropical rain forest environments; and 2) the sizes and concentrations of dust particles accumulated over a fixed period of time differ depending on site location and season of investigation. These results may hold important implications for the interpretation of microwear on primate teeth.Item Open Access Mechanical defenses in leaves eaten by Costa Rican howling monkeys (Alouatta palliata).(Am J Phys Anthropol, 2006-01) Teaford, MF; Lucas, PW; Ungar, PS; Glander, KEPrimate species often eat foods of different physical properties. This may have implications for tooth structure and wear in those species. The purpose of this study was to examine the mechanical defenses of leaves eaten by Alouatta palliata from different social groups at Hacienda La Pacifica in Costa Rica. Leaves were sampled from the home-ranges of groups living in different microhabitats. Specimens were collected during the wet and dry seasons from the same tree, same plant part, and same degree of development as those eaten by the monkeys. The toughness of over 300 leaves was estimated using a scissors test on a Darvell mechanical tester. Toughness values were compared between social groups, seasons, and locations on the leaves using ANOVA. Representative samples of leaves were also sun-dried for subsequent scanning electron microscopy and energy dispersive x-ray (EDX) analyses in an attempt to locate silica on the leaves. Both forms of mechanical defense (toughness and silica) were found to be at work in the plants at La Pacifica. Fracture toughness varied significantly by location within single leaves, indicating that measures of fracture toughness must be standardized by location on food items. Monkeys made some food choices based on fracture toughness by avoiding the toughest parts of leaves and consuming the least tough portions. Intergroup and seasonal differences in the toughness of foods suggest that subtle differences in resource availability can have a significant impact on diet and feeding in Alouatta palliata. Intergroup differences in the incidence of silica on leaves raise the possibility of matching differences in the rates and patterns of tooth wear.Item Open Access Methods for Studying the Ecological Physiology of Feeding in Free-Ranging Howlers (Alouatta palliata) at La Pacifica, Costa Rica(International Journal of Primatology, 2012-06-01) Vinyard, CJ; Glander, KE; Teaford, MF; Thompson, CL; Deffenbaugh, M; Williams, SHWe lack a general understanding of how primates perform physiologically during feeding to cope with the challenges of their natural environments. We here discuss several methods for studying the ecological physiology of feeding in mantled howlers (Alouatta palliata) at La Pacifica, Costa Rica. Our initial physiological effort focuses on recording electromyographic activity (EMG) from the jaw muscles in free-ranging howlers while they feed in their natural forest habitat. We integrate these EMG data with measurements of food material properties, dental wear rates, as well as spatial analyses of resource use and food distribution. Future work will focus on incorporating physiological measures of bone deformation, i. e., bone strain; temperatures; food nutritional data; and hormonal analyses. Collectively, these efforts will help us to better understand the challenges that howlers face in their environment and the physiological mechanisms they employ during feeding. Our initial efforts provide a proof of concept demonstrating the methodological feasibility of studying the physiology of feeding in free-ranging primates. Although howlers offer certain advantages to in vivo field research, many of the approaches described here can be applied to other primates in natural habitats. By collecting physiological data simultaneously with ecological and behavioral data, we will promote a more synthetic understanding of primate feeding and its evolutionary history. © 2012 Springer Science+Business Media, LLC.Item Open Access Telemetry system for assessing jaw-muscle function in free-ranging primates(International Journal of Primatology, 2008-12-01) Williams, SH; Vinyard, CJ; Glander, KE; Deffenbaugh, M; Teaford, MF; Thompson, CLIn vivo laboratory-based studies describing jaw-muscle activity and mandibular bone strain during mastication provide the empirical basis for most evolutionary hypotheses linking primate masticatory apparatus form to diet. However, the laboratory data pose a potential problem for testing predictions of these hypotheses because estimates of masticatory function and performance recorded in the laboratory may lack the appropriate ecological context for understanding adaptation and evolution. For example, in laboratory studies researchers elicit rhythmic chewing using foods that may differ significantly from the diets of wild primates. Because the textural and mechanical properties of foods influence jaw-muscle activity and the resulting strains, chewing behaviors studied in the laboratory may not adequately reflect chewing behaviors of primates feeding in their natural habitats. To circumvent this limitation of laboratory-based studies of primate mastication, we developed a system for recording jaw-muscle electromyograms (EMGs) from free-ranging primates so that researchers can conduct studies of primate jaw-muscle function in vivo in the field. We used the system to record jaw-muscle EMGs from mantled howlers (Alouatta palliata) at Hacienda La Pacifica, Costa Rica. These are the first EMGs recorded from a noncaptive primate feeding in its natural habitat. Further refinements of the system will allow long-term EMG data collection so that researchers can correlate jaw-muscle function with food mechanical properties and behavioral observations. In addition to furthering understanding of primate feeding biology, our work will foster improved adaptive hypotheses explaining the evolution of primate jaw form. © 2008 Springer Science+Business Media, LLC.