Browsing by Author "Theologis, Alexander A"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Impact of preoperative depression on 2-year clinical outcomes following adult spinal deformity surgery: the importance of risk stratification based on type of psychological distress.(Journal of neurosurgery. Spine, 2016-10) Theologis, Alexander A; Ailon, Tamir; Scheer, Justin K; Smith, Justin S; Shaffrey, Christopher I; Bess, Shay; Gupta, Munish; Klineberg, Eric O; Kebaish, Khaled; Schwab, Frank; Lafage, Virginie; Burton, Douglas; Hart, Robert; Ames, Christopher P; International Spine Study GroupOBJECTIVE The objective of this study was to isolate whether the effect of a baseline clinical history of depression on outcome is independent of associated physical disability and to evaluate which mental health screening tool has the most utility in determining 2-year clinical outcomes after adult spinal deformity (ASD) surgery. METHODS Consecutively enrolled patients with ASD in a prospective, multicenter ASD database who underwent surgical intervention with a minimum 2-year follow-up were retrospectively reviewed. A subset of patients who completed the Distress and Risk Assessment Method (DRAM) was also analyzed. The effects of categorical baseline depression and DRAM classification on the Oswestry Disability Index (ODI), SF-36, and Scoliosis Research Society questionnaire (SRS-22r) were assessed using univariate and multivariate linear regression analyses. The probability of achieving ≥ 1 minimal clinically important difference (MCID) on the ODI based on the DRAM's Modified Somatic Perceptions Questionnaire (MSPQ) score was estimated. RESULTS Of 267 patients, 66 (24.7%) had self-reported preoperative depression. Patients with baseline depression had significantly more preoperative back pain, greater BMI and Charlson Comorbidity Indices, higher ODIs, and lower SRS-22r and SF-36 Physical/Mental Component Summary (PCS/MCS) scores compared with those without self-reported baseline depression. They also had more severe regional and global sagittal malalignment. After adjusting for these differences, preoperative depression did not impact 2-year ODI, PCS/MCS, or SRS-22r totals (p > 0.05). Compared with those in the "normal" DRAM category, "distressed somatics" (n = 11) had higher ODI (+23.5 points), lower PCS (-10.9), SRS-22r activity (-0.9), and SRS-22r total (-0.8) scores (p ≤ 0.01), while "distressed depressives" (n = 25) had lower PCS (-8.4) and SRS-22r total (-0.5) scores (p < 0.05). After adjusting for important covariates, each additional point on the baseline MSPQ was associated with a 0.8-point increase in 2-year ODI (p = 0.03). The probability of improving by at least 1 MCID in 2-year ODI ranged from 77% to 21% for MSPQ scores 0-20, respectively. CONCLUSIONS A baseline clinical history of depression does not correlate with worse 2-year outcomes after ASD surgery after adjusting for baseline differences in comorbidities, health-related quality of life, and spinal deformity severity. Conversely, DRAM improved risk stratification of patient subgroups predisposed to achieving suboptimal surgical outcomes. The DRAM's MSPQ was more predictive than MCS and SRS mental domain for 2-year outcomes and may be a valuable tool for surgical screening.Item Open Access Magnitude, Location, and Factors Related to Regional and Global Sagittal Alignment Change in Long Adult Deformity Constructs: Report of 183 Patients With 2-Year Follow-up.(Clinical spine surgery, 2017-08) Theologis, Alexander A; Safaee, Michael; Scheer, Justin K; Lafage, Virginie; Hostin, Rick; Hart, Robert A; Klineberg, Eric O; Protopsaltis, Themistocles S; Deviren, Vedat; Burton, Douglas C; Sciubba, Daniel M; Kebaish, Khaled; Bess, Shay; Shaffrey, Christopher I; Schwab, Frank; Smith, Justin S; Ames, Christopher P; International Spine Study Group (ISSG)Study design
This is a retrospective review of a prospective multicenter adult spinal deformity (ASD) database.Objective
To quantify the location and magnitude of sagittal alignment changes within instrumented and noninstrumented spinal segments and to investigate the factors associated with these changes after surgery for ASD.Summary of background data
Spinal realignment is one of the major goals in ASD surgery and changes in the alignment are common following surgical correction.Methods
Inclusion criteria: operative patients with age above 18, coronal Cobb angle ≥20 degrees, sagittal vertical axis (SVA) ≥5 cm, pelvic tilt ≥25 degrees, and/or thoracic kyphosis ≥60 degrees.Exclusion criteria
revision surgery 6 weeks postoperatively. Standard sagittal radiographic spinal deformity parameters were evaluated. Changes in sagittal parameters between 6 weeks and 2 years postoperatively were assessed within and outside instrumented segments. Associations between changes in sagittal alignment and age, preoperative SVA, rod diameters, rod material, presence of 3-column osteotomy, and the use of interbody fusions were evaluated. Patients were also stratified by >5- and >10-degree changes in alignment.Results
In total, 183 patients (male:29, female:154, average age: 56±14.8 y) met inclusion criteria. A total of 45(24.6%) patients had increase in pelvic tilt >5 degrees, 74(40.4%) had increase in pelvic incidence and lumbar lordosis (LL) >5 degrees, and 76 (41.5%) had increase in SVA >2 cm. Mean change of thoracic sagittal alignment was +8 degrees; 70 (60%) patients had increases of >5 degrees and 31 (27%) had increases of >10 degrees. Noninstrumented thoracic segments had significantly more increase than instrumented thoracic segments (P=0.02). Mean loss of LL was -6 degrees; 49(47%) patients had worsening >5 degrees and 13(13%) >10 degrees. Noninstrumented lumbar segments had significantly less loss of lordosis than instrumented segments (P<0.01). Risks for loss of LL were: age 65 years and above [odds ratio (OR) 9.4; 95% confidence interval (CI), 3.5-25.2; P<0.01], preoperative SVA>5 cm (OR, 2.4; 95% CI, 1.3-4.4; P<0.01), and lumbar interbody fusion (OR, 2.3; 95% CI, 1.2-4.2; P<0.01). Smaller rods (4.5 mm) were associated with a lower probability of worsening LL compared with 5.5-mm rods (OR, 0.15; 95% CI, 0.04-0.58; P<0.01) and 6.0-mm rods (OR, 0.36; 95% CI, 0.18-0.72; P<0.01). The presence of a 3-column osteotomy and rod material were not significant factors in alignment changes (P>0.05).Conclusions
After correction of ASD, increases in thoracic and decreases in lumbar alignment is common. Loss of thoracic sagittal alignment primarily occurs in noninstrumented thoracic segments, whereas instrumented lumbar levels in elderly patients ( above 65 y) with high preoperative SVA, interbody fusions, and larger rods have significantly higher rates of postoperative sagittal alignment changes in the lumbar spine.Item Open Access Utility of multilevel lateral interbody fusion of the thoracolumbar coronal curve apex in adult deformity surgery in combination with open posterior instrumentation and L5-S1 interbody fusion: a case-matched evaluation of 32 patients.(Journal of neurosurgery. Spine, 2017-02) Theologis, Alexander A; Mundis, Gregory M; Nguyen, Stacie; Okonkwo, David O; Mummaneni, Praveen V; Smith, Justin S; Shaffrey, Christopher I; Fessler, Richard; Bess, Shay; Schwab, Frank; Diebo, Bassel G; Burton, Douglas; Hart, Robert; Deviren, Vedat; Ames, Christopher; for the International Spine Study GroupOBJECTIVE The aim of this study was to evaluate the utility of supplementing long thoracolumbar posterior instrumented fusion (posterior spinal fusion, PSF) with lateral interbody fusion (LIF) of the lumbar/thoracolumbar coronal curve apex in adult spinal deformity (ASD). METHODS Two multicenter databases were evaluated. Adults who had undergone multilevel LIF of the coronal curve apex in addition to PSF with L5-S1 interbody fusion (LS+Apex group) were matched by number of posterior levels fused with patients who had undergone PSF with L5-S1 interbody fusion without LIF (LS-Only group). All patients had at least 2 years of follow-up. Percutaneous PSF and 3-column osteotomy (3CO) were excluded. Demographics, perioperative details, radiographic spinal deformity measurements, and HRQoL data were analyzed. RESULTS Thirty-two patients were matched (LS+Apex: 16; LS: 16) (6 men, 26 women; mean age 63 ± 10 years). Overall, the average values for measures of deformity were as follows: Cobb angle > 40°, sagittal vertical axis (SVA) > 6 cm, pelvic tilt (PT) > 25°, and mismatch between pelvic incidence (PI) and lumbar lordosis (LL) > 15°. There were no significant intergroup differences in preoperative radiographic parameters, although patients in the LS+Apex group had greater Cobb angles and less LL. Patients in the LS+Apex group had significantly more anterior levels fused (4.6 vs 1), longer operative times (859 vs 379 minutes), and longer length of stay (12 vs 7.5 days) (all p < 0.01). For patients in the LS+Apex group, Cobb angle, pelvic tilt (PT), lumbar lordosis (LL), PI-LL (lumbopelvic mismatch), Oswestry Disability Index (ODI) scores, and visual analog scale (VAS) scores for back and leg pain improved significantly (p < 0.05). For patients in the LS-Only group, there were significant improvements in Cobb angle, ODI score, and VAS scores for back and leg pain. The LS+Apex group had better correction of Cobb angles (56% vs 33%, p = 0.02), SVA (43% vs 5%, p = 0.46), LL (62% vs 13%, p = 0.35), and PI-LL (68% vs 33%, p = 0.32). Despite more LS+Apex patients having major complications (56% vs 13%; p = 0.02) and postoperative leg weakness (31% vs 6%, p = 0.07), there were no intergroup differences in 2-year outcomes. CONCLUSIONS Long open posterior instrumented fusion with or without multilevel LIF is used to treat a variety of coronal and sagittal adult thoracolumbar deformities. The addition of multilevel LIF to open PSF with L5-S1 interbody support in this small cohort was often used in more severe coronal and/or lumbopelvic sagittal deformities and offered better correction of major Cobb angles, lumbopelvic parameters, and SVA than posterior-only operations. As these advantages came at the expense of more major complications, more leg weakness, greater blood loss, and longer operative times and hospital stays without an improvement in 2-year outcomes, future investigations should aim to more clearly define deformities that warrant the addition of multilevel LIF to open PSF and L5-S1 interbody fusion.