Browsing by Author "Tokdar, Surya T"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Coordinated multiplexing of information about separate objects in visual cortex.(eLife, 2022-11) Jun, Na Young; Ruff, Douglas A; Kramer, Lily E; Bowes, Brittany; Tokdar, Surya T; Cohen, Marlene R; Groh, Jennifer MSensory receptive fields are large enough that they can contain more than one perceptible stimulus. How, then, can the brain encode information about each of the stimuli that may be present at a given moment? We recently showed that when more than one stimulus is present, single neurons can fluctuate between coding one vs. the other(s) across some time period, suggesting a form of neural multiplexing of different stimuli (Caruso et al., 2018). Here, we investigate (a) whether such coding fluctuations occur in early visual cortical areas; (b) how coding fluctuations are coordinated across the neural population; and (c) how coordinated coding fluctuations depend on the parsing of stimuli into separate vs. fused objects. We found coding fluctuations do occur in macaque V1 but only when the two stimuli form separate objects. Such separate objects evoked a novel pattern of V1 spike count ('noise') correlations involving distinct distributions of positive and negative values. This bimodal correlation pattern was most pronounced among pairs of neurons showing the strongest evidence for coding fluctuations or multiplexing. Whether a given pair of neurons exhibited positive or negative correlations depended on whether the two neurons both responded better to the same object or had different object preferences. Distinct distributions of spike count correlations based on stimulus preferences were also seen in V4 for separate objects but not when two stimuli fused to form one object. These findings suggest multiple objects evoke different response dynamics than those evoked by single stimuli, lending support to the multiplexing hypothesis and suggesting a means by which information about multiple objects can be preserved despite the apparent coarseness of sensory coding.Item Open Access Efficient Gaussian process regression for large datasets.(Biometrika, 2013-03) Banerjee, Anjishnu; Dunson, David B; Tokdar, Surya TGaussian processes are widely used in nonparametric regression, classification and spatiotemporal modelling, facilitated in part by a rich literature on their theoretical properties. However, one of their practical limitations is expensive computation, typically on the order of n(3) where n is the number of data points, in performing the necessary matrix inversions. For large datasets, storage and processing also lead to computational bottlenecks, and numerical stability of the estimates and predicted values degrades with increasing n. Various methods have been proposed to address these problems, including predictive processes in spatial data analysis and the subset-of-regressors technique in machine learning. The idea underlying these approaches is to use a subset of the data, but this raises questions concerning sensitivity to the choice of subset and limitations in estimating fine-scale structure in regions that are not well covered by the subset. Motivated by the literature on compressive sensing, we propose an alternative approach that involves linear projection of all the data points onto a lower-dimensional subspace. We demonstrate the superiority of this approach from a theoretical perspective and through simulated and real data examples.Item Open Access Sensorimotor abilities predict on-field performance in professional baseball.(Scientific reports, 2018-01-08) Burris, Kyle; Vittetoe, Kelly; Ramger, Benjamin; Suresh, Sunith; Tokdar, Surya T; Reiter, Jerome P; Appelbaum, L GregoryBaseball players must be able to see and react in an instant, yet it is hotly debated whether superior performance is associated with superior sensorimotor abilities. In this study, we compare sensorimotor abilities, measured through 8 psychomotor tasks comprising the Nike Sensory Station assessment battery, and game statistics in a sample of 252 professional baseball players to evaluate the links between sensorimotor skills and on-field performance. For this purpose, we develop a series of Bayesian hierarchical latent variable models enabling us to compare statistics across professional baseball leagues. Within this framework, we find that sensorimotor abilities are significant predictors of on-base percentage, walk rate and strikeout rate, accounting for age, position, and league. We find no such relationship for either slugging percentage or fielder-independent pitching. The pattern of results suggests performance contributions from both visual-sensory and visual-motor abilities and indicates that sensorimotor screenings may be useful for player scouting.Item Open Access Single neurons may encode simultaneous stimuli by switching between activity patterns.(Nature communications, 2018-07-13) Caruso, Valeria C; Mohl, Jeff T; Glynn, Christopher; Lee, Jungah; Willett, Shawn M; Zaman, Azeem; Ebihara, Akinori F; Estrada, Rolando; Freiwald, Winrich A; Tokdar, Surya T; Groh, Jennifer MHow the brain preserves information about multiple simultaneous items is poorly understood. We report that single neurons can represent multiple stimuli by interleaving signals across time. We record single units in an auditory region, the inferior colliculus, while monkeys localize 1 or 2 simultaneous sounds. During dual-sound trials, we find that some neurons fluctuate between firing rates observed for each single sound, either on a whole-trial or on a sub-trial timescale. These fluctuations are correlated in pairs of neurons, can be predicted by the state of local field potentials prior to sound onset, and, in one monkey, can predict which sound will be reported first. We find corroborating evidence of fluctuating activity patterns in a separate dataset involving responses of inferotemporal cortex neurons to multiple visual stimuli. Alternation between activity patterns corresponding to each of multiple items may therefore be a general strategy to enhance the brain processing capacity, potentially linking such disparate phenomena as variable neural firing, neural oscillations, and limits in attentional/memory capacity.Item Open Access Visual abilities distinguish pitchers from hitters in professional baseball.(Journal of sports sciences, 2018-01) Klemish, David; Ramger, Benjamin; Vittetoe, Kelly; Reiter, Jerome P; Tokdar, Surya T; Appelbaum, Lawrence GregoryThis study aimed to evaluate the possibility that differences in sensorimotor abilities exist between hitters and pitchers in a large cohort of baseball players of varying levels of experience. Secondary data analysis was performed on 9 sensorimotor tasks comprising the Nike Sensory Station assessment battery. Bayesian hierarchical regression modelling was applied to test for differences between pitchers and hitters in data from 566 baseball players (112 high school, 85 college, 369 professional) collected at 20 testing centres. Explanatory variables including height, handedness, eye dominance, concussion history, and player position were modelled along with age curves using basis regression splines. Regression analyses revealed better performance for hitters relative to pitchers at the professional level in the visual clarity and depth perception tasks, but these differences did not exist at the high school or college levels. No significant differences were observed in the other 7 measures of sensorimotor capabilities included in the test battery, and no systematic biases were found between the testing centres. These findings, indicating that professional-level hitters have better visual acuity and depth perception than professional-level pitchers, affirm the notion that highly experienced athletes have differing perceptual skills. Findings are discussed in relation to deliberate practice theory.