Browsing by Author "Tomaras, Georgia D"
Results Per Page
Sort Options
Item Open Access Aggregate complexes of HIV-1 induced by multimeric antibodies.(Retrovirology, 2014-10-02) Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin JBACKGROUND: Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. RESULTS: The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. CONCLUSIONS: These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.Item Open Access Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay.(Cytometry. Part A : the journal of the International Society for Analytical Cytology, 2018-04) Pollara, Justin; Orlandi, Chiara; Beck, Charles; Edwards, R Whitney; Hu, Yi; Liu, Shuying; Wang, Shixia; Koup, Richard A; Denny, Thomas N; Lu, Shan; Tomaras, Georgia D; DeVico, Anthony; Lewis, George K; Ferrari, GuidoSeveral different assay methodologies have been described for the evaluation of HIV or SIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC). Commonly used assays measure ADCC by evaluating effector cell functions, or by detecting elimination of target cells. Signaling through Fc receptors, cellular activation, cytotoxic granule exocytosis, or accumulation of cytolytic and immune signaling factors have been used to evaluate ADCC at the level of the effector cells. Alternatively, assays that measure killing or loss of target cells provide a direct assessment of the specific killing activity of antibodies capable of ADCC. Thus, each of these two distinct types of assays provides information on only one of the critical components of an ADCC event; either the effector cells involved, or the resulting effect on the target cell. We have developed a simple modification of our previously described high-throughput ADCC GranToxiLux (GTL) assay that uses area scaling analysis (ASA) to facilitate simultaneous quantification of ADCC activity at the target cell level, and assessment of the contribution of natural killer cells and monocytes to the total observed ADCC activity when whole human peripheral blood mononuclear cells are used as a source of effector cells. The modified analysis method requires no additional reagents and can, therefore, be easily included in prospective studies. Moreover, ASA can also often be applied to pre-existing ADCC-GTL datasets. Thus, incorporation of ASA to the ADCC-GTL assay provides an ancillary assessment of the ability of natural and vaccine-induced antibodies to recruit natural killer cells as well as monocytes against HIV or SIV; or to any other field of research for which this assay is applied. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.Item Open Access Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1.(J Virol, 2015-10) Pollara, Justin; McGuire, Erin; Fouda, Genevieve G; Rountree, Wes; Eudailey, Josh; Overman, R Glenn; Seaton, Kelly E; Deal, Aaron; Edwards, R Whitney; Tegha, Gerald; Kamwendo, Deborah; Kumwenda, Jacob; Nelson, Julie AE; Liao, Hua-Xin; Brinkley, Christie; Denny, Thomas N; Ochsenbauer, Christina; Ellington, Sascha; King, Caroline C; Jamieson, Denise J; van der Horst, Charles; Kourtis, Athena P; Tomaras, Georgia D; Ferrari, Guido; Permar, Sallie RUNLABELLED: Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE: Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.Item Open Access Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk.(Journal of virology, 2016-05) Nelson, Cody S; Pollara, Justin; Kunz, Erika L; Jeffries, Thomas L; Duffy, Ryan; Beck, Charles; Stamper, Lisa; Wang, Minyue; Shen, Xiaoying; Pickup, David J; Staats, Herman F; Hudgens, Michael G; Kepler, Thomas B; Montefiori, David C; Moody, M Anthony; Tomaras, Georgia D; Liao, Hua-Xin; Haynes, Barton F; Ferrari, Guido; Fouda, Genevieve GA; Permar, Sallie RUnlabelled
Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding.Importance
Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT.Item Open Access Computational analysis of antibody dynamics identifies recent HIV-1 infection.(JCI insight, 2017-12-21) Seaton, Kelly E; Vandergrift, Nathan A; Deal, Aaron W; Rountree, Wes; Bainbridge, John; Grebe, Eduard; Anderson, David A; Sawant, Sheetal; Shen, Xiaoying; Yates, Nicole L; Denny, Thomas N; Liao, Hua-Xin; Haynes, Barton F; Robb, Merlin L; Parkin, Neil; Santos, Breno R; Garrett, Nigel; Price, Matthew A; Naniche, Denise; Duerr, Ann C; CEPHIA group; Keating, Sheila; Hampton, Dylan; Facente, Shelley; Marson, Kara; Welte, Alex; Pilcher, Christopher D; Cohen, Myron S; Tomaras, Georgia DAccurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1-infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation.Item Open Access Fc-Dependent Antibody-Mediated Functions Against HIV-1(2018) Tay, Matthew ZiruiAntibodies are important therapeutic agents that can be elicited by vaccination or directly infused. However, the mechanisms by which antibodies achieve protection against pathogens are not fully elucidated, in particular since antibodies mediate multiple functions, including direct neutralization as well as Fc-mediated effector functions. In this dissertation, I focused on one such Fc-mediated effector function, antibody-dependent phagocytosis, and examined it in the context of HIV-1. Firstly, with regard to the antibody Fv interaction with antigen, I used a novel HIV-1 virion phagocytosis assay to identify targets on the HIV-1 virion surface that can be targeted for antibody-mediated phagocytosis in the context of monoclonal and polyclonal antibodies from HIV-1 infection and vaccination settings, and demonstrated that these include both broadly neutralizing and non-neutralizing antibody epitopes. To examine whether antibody-mediated phagocytosis of HIV-infected cells can be an additional potential antiviral mechanism, I also developed an infected cell phagocytosis assay and demonstrated that in addition to virions, HIV-infected cells can also be targeted for antibody-mediated phagocytosis. Secondly, with regard to the antibody Fc interaction with FcR, I utilized recombinant subclass-switched antibodies and demonstrated that antibody isotypes and subclasses differ for antibody-dependent phagocytosis function, with IgG3 being the most potent. Furthermore, by examining the phagocytosis responses of humans and non-human primates, I demonstrated that there exists sufficient cross-reactivity between humans and rhesus macaques to examine human antibody subclass-specific phagocytosis activity in the rhesus macaque system despite evolutionary divergence in the Fc-FcR systems of the two species. Thirdly, I examined the downstream effects of antibody-mediated HIV-1 virion phagocytosis, and demonstrated that virions phagocytosed by antibody-dependent mechanisms likely do not cause enhanced infection, and also do not elicit additional inflammatory cytokines including IL-1β, IL-6, and TNFα. Thus, my work contributes to the understanding of antibody Fc-mediated phagocytosis function, with implications for HIV-1 vaccine and passive immunotherapy strategies, and broader relevance also for other infectious diseases as well as antibody-based cancer immunotherapy.
Item Open Access H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.(PloS one, 2011-01) Moody, M Anthony; Zhang, Ruijun; Walter, Emmanuel B; Woods, Christopher W; Ginsburg, Geoffrey S; McClain, Micah T; Denny, Thomas N; Chen, Xi; Munshaw, Supriya; Marshall, Dawn J; Whitesides, John F; Drinker, Mark S; Amos, Joshua D; Gurley, Thaddeus C; Eudailey, Joshua A; Foulger, Andrew; DeRosa, Katherine R; Parks, Robert; Meyerhoff, R Ryan; Yu, Jae-Sung; Kozink, Daniel M; Barefoot, Brice E; Ramsburg, Elizabeth A; Khurana, Surender; Golding, Hana; Vandergrift, Nathan A; Alam, S Munir; Tomaras, Georgia D; Kepler, Thomas B; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton FDuring the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection.To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject.The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.Item Open Access HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees.(Journal of virology, 2018-04) Yates, Nicole L; deCamp, Allan C; Korber, Bette T; Liao, Hua-Xin; Irene, Carmela; Pinter, Abraham; Peacock, James; Harris, Linda J; Sawant, Sheetal; Hraber, Peter; Shen, Xiaoying; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Berman, Phillip W; Robb, Merlin L; Pantaleo, Giuseppe; Zolla-Pazner, Susan; Haynes, Barton F; Alam, S Munir; Montefiori, David C; Tomaras, Georgia DInduction of broadly cross-reactive antiviral humoral responses with the capacity to target globally diverse circulating strains is a key goal for HIV-1 immunogen design. A major gap in the field is the identification of diverse HIV-1 envelope antigens to evaluate vaccine regimens for binding antibody breadth. In this study, we define unique antigen panels to map HIV-1 vaccine-elicited antibody breadth and durability. Diverse HIV-1 envelope glycoproteins were selected based on genetic and geographic diversity to cover the global epidemic, with a focus on sexually acquired transmitted/founder viruses with a tier 2 neutralization phenotype. Unique antigenicity was determined by nonredundancy (Spearman correlation), and antigens were clustered using partitioning around medoids (PAM) to identify antigen diversity. Cross-validation demonstrated that the PAM method was better than selection by reactivity and random selection. Analysis of vaccine-elicited V1V2 binding antibody in longitudinal samples from the RV144 clinical trial revealed the striking heterogeneity among individual vaccinees in maintaining durable responses. These data support the idea that a major goal for vaccine development is to improve antibody levels, breadth, and durability at the population level. Elucidating the level and durability of vaccine-elicited binding antibody breadth needed for protection is critical for the development of a globally efficacious HIV vaccine.IMPORTANCE The path toward an efficacious HIV-1 vaccine will require characterization of vaccine-induced immunity that can recognize and target the highly genetically diverse virus envelope glycoproteins. Antibodies that target the envelope glycoproteins, including diverse sequences within the first and second hypervariable regions (V1V2) of gp120, were identified as correlates of risk for the one partially efficacious HIV-1 vaccine. To build upon this discovery, we experimentally and computationally evaluated humoral responses to define envelope glycoproteins representative of the antigenic diversity of HIV globally. These diverse envelope antigens distinguished binding antibody breadth and durability among vaccine candidates, thus providing insights for advancing the most promising HIV-1 vaccine candidates.Item Open Access HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers.(Scientific reports, 2019-07-15) Nyanhete, Tinashe E; Frisbee, Alyse L; Bradley, Todd; Faison, William J; Robins, Elizabeth; Payne, Tamika; Freel, Stephanie A; Sawant, Sheetal; Weinhold, Kent J; Wiehe, Kevin; Haynes, Barton F; Ferrari, Guido; Li, Qi-Jing; Moody, M Anthony; Tomaras, Georgia DA paradigm shifting study demonstrated that induction of MHC class E and II-restricted CD8+ T cells was associated with the clearance of SIV infection in rhesus macaques. Another recent study highlighted the presence of HIV-1-specific class II-restricted CD8+ T cells in HIV-1 patients who naturally control infection (virus controllers; VCs). However, questions regarding class II-restricted CD8+ T cells ontogeny, distribution across different HIV-1 disease states and their role in viral control remain unclear. In this study, we investigated the distribution and anti-viral properties of HLA-DRB1*0701 and DQB1*0501 class II-restricted CD8+ T cells in different HIV-1 patient cohorts; and whether class II-restricted CD8+ T cells represent a unique T cell subset. We show that memory class II-restricted CD8+ T cell responses were more often detectable in VCs than in chronically infected patients, but not in healthy seronegative donors. We also demonstrate that VC CD8+ T cells inhibit virus replication in both a class I- and class II-dependent manner, and that in two VC patients the class II-restricted CD8+ T cells with an anti-viral gene signature expressed both CD4+ and CD8+ T cell lineage-specific genes. These data demonstrated that anti-viral memory class II-restricted CD8+ T cells with hybrid CD4+ and CD8+ features are present during natural HIV-1 infection.Item Open Access Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques.(PLoS Pathog, 2015-08) Santra, Sampa; Tomaras, Georgia D; Warrier, Ranjit; Nicely, Nathan I; Liao, Hua-Xin; Pollara, Justin; Liu, Pinghuang; Alam, S Munir; Zhang, Ruijun; Cocklin, Sarah L; Shen, Xiaoying; Duffy, Ryan; Xia, Shi-Mao; Schutte, Robert J; Pemble Iv, Charles W; Dennison, S Moses; Li, Hui; Chao, Andrew; Vidnovic, Kora; Evans, Abbey; Klein, Katja; Kumar, Amit; Robinson, James; Landucci, Gary; Forthal, Donald N; Montefiori, David C; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Soderberg, Kelly A; Giorgi, Elena E; Blair, Lily; Korber, Bette T; Moog, Christiane; Shattock, Robin J; Letvin, Norman L; Schmitz, Joern E; Moody, MA; Gao, Feng; Ferrari, Guido; Shaw, George M; Haynes, Barton FHIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.Item Open Access Salmonella Typhi Vi capsule prime-boost vaccination induces convergent and functional antibody responses.(Science immunology, 2021-10) Dahora, Lindsay C; Verheul, Marije K; Williams, Katherine L; Jin, Celina; Stockdale, Lisa; Cavet, Guy; Giladi, Eldar; Hill, Jennifer; Kim, Dongkyoon; Leung, Yvonne; Bobay, Benjamin G; Spicer, Leonard D; Sawant, Sheetal; Rijpkema, Sjoerd; Dennison, S Moses; Alam, S Munir; Pollard, Andrew J; Tomaras, Georgia DVaccine development to prevent Salmonella Typhi infections has accelerated over the past decade, resulting in licensure of new vaccines, which use the Vi polysaccharide (Vi PS) of the bacterium conjugated to an unrelated carrier protein as the active component. Antibodies elicited by these vaccines are important for mediating protection against typhoid fever. However, the characteristics of protective and functional Vi antibodies are unknown. In this study, we investigated the human antibody repertoire, avidity maturation, epitope specificity, and function after immunization with a single dose of Vi-tetanus toxoid conjugate vaccine (Vi-TT) and after a booster with plain Vi PS (Vi-PS). The Vi-TT prime induced an IgG1-dominant response, whereas the Vi-TT prime followed by the Vi-PS boost induced IgG1 and IgG2 antibody production. B cells from recipients who received both prime and boost showed evidence of convergence, with shared V gene usage and CDR3 characteristics. The detected Vi antibodies showed heterogeneous avidity ranging from 10 μM to 500 pM, with no evidence of affinity maturation after the boost. Vi-specific antibodies mediated Fc effector functions, which correlated with antibody dissociation kinetics but not with association kinetics. We identified antibodies induced by prime and boost vaccines that recognized subdominant epitopes, indicated by binding to the de–O-acetylated Vi backbone. These antibodies also mediated Fc-dependent functions, such as complement deposition and monocyte phagocytosis. Defining strategies on how to broaden epitope targeting for S. Typhi Vi and enriching for antibody Fc functions that protect against typhoid fever will advance the design of high-efficacy Vi vaccines for protection across diverse populations.Item Open Access IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells.(Communications biology, 2018-01) Blasi, Maria; Negri, Donatella; LaBranche, Celia; Alam, S Munir; Baker, Erich J; Brunner, Elizabeth C; Gladden, Morgan A; Michelini, Zuleika; Vandergrift, Nathan A; Wiehe, Kevin J; Parks, Robert; Shen, Xiaoying; Bonsignori, Mattia; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Santra, Sampa; Haynes, Barton F; Moody, Michael A; Cara, Andrea; Klotman, Mary EHIV continues to be a major global health issue. In spite of successful prevention interventions and treatment methods, the development of an HIV vaccine remains a major priority for the field and would be the optimal strategy to prevent new infections. We showed previously that a single immunization with a SIV-based integrase-defective lentiviral vector (IDLV) expressing the 1086.C HIV-1-envelope induced durable, high-magnitude immune responses in non-human primates (NHPs). In this study, we have further characterized the humoral responses by assessing antibody affinity maturation and antigen-specific memory B-cell persistence in two vaccinated macaques. These animals were also boosted with IDLV expressing the heterologous 1176.C HIV-1-Env to determine if neutralization breadth could be increased, followed by evaluation of the injection sites to assess IDLV persistence. IDLV-Env immunization was associated with persistence of the vector DNA for up to 6 months post immunization and affinity maturation of antigen-specific memory B cells.Item Open Access IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria.(PLoS One, 2014) Hwang, Kwan-Ki; Trama, Ashley M; Kozink, Daniel M; Chen, Xi; Wiehe, Kevin; Cooper, Abby J; Xia, Shi-Mao; Wang, Minyue; Marshall, Dawn J; Whitesides, John; Alam, Munir; Tomaras, Georgia D; Allen, Steven L; Rai, Kanti R; McKeating, Jane; Catera, Rosa; Yan, Xiao-Jie; Chu, Charles C; Kelsoe, Garnett; Liao, Hua-Xin; Chiorazzi, Nicholas; Haynes, Barton FB-cell chronic lymphocytic leukemia (B-CLL) patients expressing unmutated immunoglobulin heavy variable regions (IGHVs) use the IGHV1-69 B cell receptor (BCR) in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s) (≥21 aa). IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54) of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54) allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies.Item Open Access Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques(MOLECULAR THERAPY, 2016-11) Negri, Donatella; Blasi, Maria; LaBranche, Celia; Parks, Robert; Balachandran, Harikrishnan; Lifton, Michelle; Shen, Xiaoying; Denny, Thomas; Ferrari, Guido; Vescio, Maria Fenicia; Andersen, Hanne; Montefiori, David C; Tomaras, Georgia D; Liao, Hua-Xin; Santra, Sampa; Haynes, Barton F; Klotman, Mary E; Cara, AndreaItem Open Access Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV.(Nature, 2014-01-23) Roederer, Mario; Keele, Brandon F; Schmidt, Stephen D; Mason, Rosemarie D; Welles, Hugh C; Fischer, Will; Labranche, Celia; Foulds, Kathryn E; Louder, Mark K; Yang, Zhi-Yong; Todd, John-Paul M; Buzby, Adam P; Mach, Linh V; Shen, Ling; Seaton, Kelly E; Ward, Brandy M; Bailer, Robert T; Gottardo, Raphael; Gu, Wenjuan; Ferrari, Guido; Alam, S Munir; Denny, Thomas N; Montefiori, David C; Tomaras, Georgia D; Korber, Bette T; Nason, Martha C; Seder, Robert A; Koup, Richard A; Letvin, Norman L; Rao, Srinivas S; Nabel, Gary J; Mascola, John RA major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.Item Open Access In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP).(Scientific reports, 2021-03-05) Livingstone, Merricka C; Bitzer, Alexis A; Giri, Alish; Luo, Kun; Sankhala, Rajeshwer S; Choe, Misook; Zou, Xiaoyan; Dennison, S Moses; Li, Yuanzhang; Washington, William; Ngauy, Viseth; Tomaras, Georgia D; Joyce, M Gordon; Batchelor, Adrian H; Dutta, SheetijPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.Item Open Access Infectious virion capture by HIV-1 gp120-specific IgG from RV144 vaccinees.(J Virol, 2013-07) Liu, Pinghuang; Yates, Nicole L; Shen, Xiaoying; Bonsignori, Mattia; Moody, M Anthony; Liao, Hua-Xin; Fong, Youyi; Alam, S Munir; Overman, R Glenn; Denny, Thomas; Ferrari, Guido; Ochsenbauer, Christina; Kappes, John C; Polonis, Victoria R; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Montefiori, David C; Gilbert, Peter; Michael, Nelson L; Kim, Jerome H; Haynes, Barton F; Tomaras, Georgia DThe detailed examination of the antibody repertoire from RV144 provides a unique template for understanding potentially protective antibody functions. Some potential immune correlates of protection were untested in the correlates analyses due to inherent assay limitations, as well as the need to keep the correlates analysis focused on a limited number of endpoints to achieve statistical power. In an RV144 pilot study, we determined that RV144 vaccination elicited antibodies that could bind infectious virions (including the vaccine strains HIV-1 CM244 and HIV-1 MN and an HIV-1 strain expressing transmitted/founder Env, B.WITO.c). Among vaccinees with the highest IgG binding antibody profile, the majority (78%) captured the infectious vaccine strain virus (CM244), while a smaller proportion of vaccinees (26%) captured HIV-1 transmitted/founder Env virus. We demonstrated that vaccine-elicited HIV-1 gp120 antibodies of multiple specificities (V3, V2, conformational C1, and gp120 conformational) mediated capture of infectious virions. Although capture of infectious HIV-1 correlated with other humoral immune responses, the extent of variation between these humoral responses and virion capture indicates that virion capture antibodies occupy unique immunological space.Item Open Access Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated.(J Exp Med, 2011-10-24) Liao, Hua-Xin; Chen, Xi; Munshaw, Supriya; Zhang, Ruijun; Marshall, Dawn J; Vandergrift, Nathan; Whitesides, John F; Lu, Xiaozhi; Yu, Jae-Sung; Hwang, Kwan-Ki; Gao, Feng; Markowitz, Martin; Heath, Sonya L; Bar, Katharine J; Goepfert, Paul A; Montefiori, David C; Shaw, George C; Alam, S Munir; Margolis, David M; Denny, Thomas N; Boyd, Scott D; Marshal, Eleanor; Egholm, Michael; Simen, Birgitte B; Hanczaruk, Bozena; Fire, Andrew Z; Voss, Gerald; Kelsoe, Garnett; Tomaras, Georgia D; Moody, M Anthony; Kepler, Thomas B; Haynes, Barton FThe initial antibody response to HIV-1 is targeted to envelope (Env) gp41, and is nonneutralizing and ineffective in controlling viremia. To understand the origins and characteristics of gp41-binding antibodies produced shortly after HIV-1 transmission, we isolated and studied gp41-reactive plasma cells from subjects acutely infected with HIV-1. The frequencies of somatic mutations were relatively high in these gp41-reactive antibodies. Reverted unmutated ancestors of gp41-reactive antibodies derived from subjects acutely infected with HIV-1 frequently did not react with autologous HIV-1 Env; however, these antibodies were polyreactive and frequently bound to host or bacterial antigens. In one large clonal lineage of gp41-reactive antibodies, reactivity to HIV-1 Env was acquired only after somatic mutations. Polyreactive gp41-binding antibodies were also isolated from uninfected individuals. These data suggest that the majority of gp41-binding antibodies produced after acute HIV-1 infection are cross-reactive responses generated by stimulating memory B cells that have previously been activated by non-HIV-1 antigens.Item Open Access Isolation of HIV-1-neutralizing mucosal monoclonal antibodies from human colostrum.(PLoS One, 2012) Friedman, James; Alam, S Munir; Shen, Xiaoying; Xia, Shi-Mao; Stewart, Shelley; Anasti, Kara; Pollara, Justin; Fouda, Genevieve G; Yang, Guang; Kelsoe, Garnett; Ferrari, Guido; Tomaras, Georgia D; Haynes, Barton F; Liao, Hua-Xin; Moody, M Anthony; Permar, Sallie RBACKGROUND: Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. METHODS: We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). RESULTS: The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. CONCLUSIONS: These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces.Item Open Access Lack of B cell dysfunction is associated with functional, gp120-dominant antibody responses in breast milk of simian immunodeficiency virus-infected African green monkeys.(J Virol, 2013-10) Amos, Joshua D; Wilks, Andrew B; Fouda, Genevieve G; Smith, Shannon D; Colvin, Lisa; Mahlokozera, Tatenda; Ho, Carrie; Beck, Krista; Overman, R Glenn; DeMarco, C Todd; Hodge, Terry L; LaBranche, Celia C; Montefiori, David C; Denny, Thomas N; Liao, Hua-Xin; Tomaras, Georgia D; Moody, M Anthony; Permar, Sallie RThe design of an effective vaccine to reduce the incidence of mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) via breastfeeding will require identification of protective immune responses that block postnatal virus acquisition. Natural hosts of simian immunodeficiency virus (SIV) sustain nonpathogenic infection and rarely transmit the virus to their infants despite high milk virus RNA loads. This is in contrast to HIV-infected women and SIV-infected rhesus macaques (RhMs), nonnatural hosts which exhibit higher rates of postnatal virus transmission. In this study, we compared the systemic and mucosal B cell responses of lactating, SIV-infected African green monkeys (AGMs), a natural host species, to that of SIV-infected RhMs and HIV-infected women. AGMs did not demonstrate hypergammaglobulinemia or accumulate circulating memory B cells during chronic SIV infection. Moreover, the milk of SIV-infected AGMs contained higher proportions of naive B cells than RhMs. Interestingly, AGMs exhibited robust milk and plasma Env binding antibody responses that were one to two logs higher than those in RhMs and humans and demonstrated autologous neutralizing responses in milk at 1 year postinfection. Furthermore, the plasma and milk Env gp120-binding antibody responses were equivalent to or predominant over Env gp140-binding antibody responses in AGMs, in contrast to that in RhMs and humans. The strong gp120-specific, functional antibody responses in the milk of SIV-infected AGMs may contribute to the rarity of postnatal transmission observed in natural SIV hosts.