Browsing by Author "Trempus, Carol S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A novel role for primary cilia in airway remodeling.(American journal of physiology. Lung cellular and molecular physiology, 2017-08) Trempus, Carol S; Song, Weifeng; Lazrak, Ahmed; Yu, Zhihong; Creighton, Judy R; Young, Bethany M; Heise, Rebecca L; Yu, Yen Rei; Ingram, Jennifer L; Tighe, Robert M; Matalon, Sadis; Garantziotis, StavrosPrimary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.Item Open Access Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease.(American journal of respiratory cell and molecular biology, 2017-12) Walker, Julia KL; Theriot, Barbara S; Ghio, Michael; Trempus, Carol S; Wong, Jordan E; McQuade, Victoria L; Liang, Jiurong; Jiang, Dianhua; Noble, Paul W; Garantziotis, Stavros; Kraft, Monica; Ingram, Jennifer LHyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.