Browsing by Author "Turkington, Timothy"
- Results Per Page
- Sort Options
Item Embargo Assessing Astatine-211 SPECT Image Quality in Relevant Organs(2024) Wong, Ye Wan EvanTheranostics is an evolving approach in nuclear medicine that aims to combine diagnostic and therapeutic value into a single agent of delivery. With increased interest in alpha-emitting radionuclides for their short effective range and high linear energy transfer, astatine-211 is a promising radionuclide for therapy applications. Previously at Duke University, the ability to image and quantitate images of astatine-211 was investigated and determined to be a challenge due to attenuation and collimation effects on desired photons for imaging, and undesirable high energy emission contributions. This research builds on that previous work to investigate the image quality extent of single photon planar and SPECT imaging for astatine-211 when considering relevant organs that could be at risk for radiation damage based on the distribution of the molecule carrying the At-211. The investigation is broken down into several experiments that provide the basis for understanding the potential of astatine-211 to perform as an imaging radionuclide, and the needed factors for image reconstruction including the appropriate linear attenuation coefficient and k-factor for dual-energy scatter correction. Two phantom designs were created. One was used to provide a baseline image quality comparison of four radionuclides (F-18 for PET, Tc-99m, Lu-177, and At-211 for single photon planar imaging). The other represented the salivary glands in the head and kidneys and tumors in the torso. Imaging the same realistically large phantom showed that only the fluorine-18 PET images 1 cm targets successfully, while technetium-99m and lutetium-177 are comparable in imaging 2 cm and 3 cm targets, and astatine-211 can only image 3 cm targets. This work successfully simulated the salivary glands and kidneys in an anthropomorphic phantom. The results indicated that the use of a k-factor of 1.1 is reasonable in the scatter correction of imaging astatine-211, which effectively reduced downscattered gamma rays in the images. Additionally, the results confirm that the medium energy general purpose collimator is better suited than the low energy high resolution collimator for imaging astatine-211 with improved SNR and comparable noise quality.
Item Open Access High sensitivity dedicated dual-breast PET/MR imaging: concept and preliminary simulations(Proceedings of SPIE, 2020-05-22) Tornai, Martin; Samanta, Suranjana; Majewski, Stanislaw; Williams, Mark; Turkington, Timothy; Register, Alan; Jiang, Jianyong; Dolinsky, Sergei; O'Sullivan, Joseph; Tai, Yuan-ChuanThis paper presents a new high-sensitivity PET geometry for high fidelity MRI-compatible PET breast imaging which can scan both breasts simultaneously and have: high sensitivity and resolution; compatibility with MR-breast imaged volume; complete visualization of both breasts, mediastinum and axilla; and a modular design. Whereas contemporary dedicated x-ray and molecular breast imaging devices only scan one breast at a time, this approach relies on an unconventional PET geometry, and is able to provide a PET field of view (FOV) larger than that from dedicated breast MRI. The system geometry is evaluated with GATE Monte Carlo simulations of intrinsic system parameters. Various sized lesions (4-6mm) having [6:1 to 4:1] lesion:background radioactivity ratios mimicking different biological uptake are simulated, strategically located throughout a volumetric anthropomorphic torso. Dedicated breast PET (dbPET) imaging is compared with contemporary clinical PET. The dbPET system sensitivity is >6X greater than for contemporary whole-body PET. The novel, non-conventional system geometry allows for simultaneous dual-breast imaging, along with full medial and axillary imaging. Iteratively reconstructed full-volumetric images illustrate sharper visualization of 4mm lower uptake [4:1] lesions throughout the FOV compared with clinical PET. Image overlap between dedicated breast PET and MRI FOVs is excellent. Simulation results indicate clear superiority over conventional, high-sensitivity whole-body PET systems, as well as improved sensitivity over single-breast dbPET systems. This proposed system potentially facilitates both early detection and diagnosis, especially by increasing specificity of MRI, as well as visualizing tissue heterogeneity, monitoring therapeutic efficacy, and detecting breast cancer recurrence throughout the entire mediastinum.Item Open Access Investigating PET Image Quality vs. Patient Size and Administered Activity for Different Scanner Models, Using the NEC Metric and a Dead-Time Model(2024) Buchli, KayliProblem: PET system performance, particularly the count rate-related effects, depends on a variety of effects including the patient size and the amount and distribution of radioactivity in the patient. The performance also depends on the particular PET system. This is primarily due to differences in detector material and detector size. This leads to a difference in image quality for the same activity level for different detectors. The current activity dosing protocol in Duke University’s Cancer Center is weight-based and system-independent, even though the systems vary greatly in count rate capability. This protocol might not be the most optimal protocol given that patients of the same weight are given the same dose but would produce different image qualities depending on the system they were scanned on. The work done in this thesis explores the components of the dosing protocol in an effort to reconsider the patient- and system- specific dosing needs for optimal image quality. This study uses Noise Equivalent Count (NEC) curves to simulate image quality for data that has been acquired using different systems, body sizes and shapes, and activity levels.Methods: This study investigates the behavior of three different hybrid PET/CT systems: the GE Discovery 690 (D690), the GE Discovery IQ (DIQ), and the GE Discovery MI (DMI). Phantom data were used to understand the performance of the three systems, and existing patient data were used to further evaluate the effects that different body characteristics have on each system. Two phantoms were used in this study: a whole-body phantom that simulates a medium- large patient and a smaller cylindrical phantom that simulates an extreme case of a small object. Both phantoms were filled with a large amount of activity (about 18 mCi for the whole-body phantom and about 12 mCi for the smaller cylindrical phantom) and thoroughly mixed before being scanned repeatedly for a long duration on all three systems to test each system’s behavior with different-sized phantoms. A Bash script was run to collect information from the phantoms’ DICOM headers so that NEC formulas could be calculated, and NEC curves could be analyzed. The dead-time model was adjusted to best fit the simulated data to the actual data to potentially improve accuracy with patient data. The phantoms were used to analyze the systems’ general behaviors without any human factors such as different uptakes for different organs, a larger variety of shapes and sizes, and different compositions. Once the general behaviors were understood and the models were adjusted, a large selection of patient data (500 for the DIQ and 500 for the DMI) was obtained. This was accomplished through the creation of multiple Bash and Python scripts that ran through patient data, retrieved the desired patients and patient scans based on specific criteria determined by the scripts, and collected anonymized data used to form NEC curves and experiment with body metrics. A few anonymized CT and PET images were saved for each patient as well so that body diameter measurements could be made. Results: It was determined that the NEC curves produced by the two different detector materials (BGO and LYSO) peaked at different activity levels for the same phantom. Also, to obtain the same NEC rate, the smaller cylindrical phantom required less activity than the whole- body phantom for each of the three systems. Dead-time data found in the image header was analyzed using Stearns’ NEC model, and his model appeared to consistently deviate from actual measurements. To improve the model, adjustments were made to parameters in the dead-time model to create a best fit to the phantom data, considering the three different systems and two phantom sizes. It was determined that a single dosing protocol may not be optimal for all systems since the NEC curves peaked at very different activities for each system and peaked at different counts per second for each system. Furthermore, the dosing protocol may not be benefiting patients of all sizes, as heavier patients may be receiving higher doses than needed for good image quality. Various body metrics were tested to compare which is the best to implement into an improved dosing protocol. These included body weight, BMI, and a pseudodiameter calculated from a cylindrical body approximation. This pseudodiameter was formed as an effort to approximate body diameters from patient weights and heights. The relationship between optimal dose (the dose at which peak image quality occurs) and the three body metrics was tested to determine whether a new dosing protocol can be formed based off of optimal doses depending on a certain body metric. It was determined that there is no correlation between optimal dose and the three body metrics. Conclusion: Body weight was concluded to be the most meaningful metric for calculating patient doses due to the ease of the measurement and the consistent relationship between image quality and patient weight for each system. Since patients with similar weights tend to produce similar image qualities, body weight can be used as a fairly reliable predictor of image quality when injected with a specific dose. Due to the differences in detection between the Discovery IQ and Discovery MI, the NEC curves produced by either system are very different, so the current dosing protocol would work best if it were system-dependent. Patients scanned on the DIQ could especially be receiving lower doses while still producing near-optimal image quality. If the goal of scanning patients is to produce the same image quality for every patient, then the dose for some patients could be significantly decreased. This can be concluded due to the NEC curves of patients at different body weights peaking at different count rates (where the lightest patients peak at higher count rates, and the heaviest patients peak at lower count rates). In this case, the current system-independent dosing calculation may not be optimal. A new dosing protocol was proposed. For the DIQ, patients would all be injected with 5.84 mCi. For the DMI, patients would be injected with a dose calculated by multiplying patients’ body weights by 0.06 mCi/kg, with a maximum injected dose of 11 mCi.