Browsing by Author "Ungar, PS"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Dust accumulation in the canopy: a potential cause of dental microwear in primates.(Am J Phys Anthropol, 1995-06) Ungar, PS; Teaford, MF; Glander, KE; Pastor, RFDental microwear researchers consider exogenous grit or dust to be an important cause of microscopic wear on primate teeth. No study to date has examined the accumulation of such abrasives on foods eaten by primates in the forest. This investigation introduces a method to collect dust at various heights in the canopy. Results from dust collection studies conducted at the primate research stations at Ketambe in Indonesia, and Hacienda La Pacifica in Costa Rica indicate that 1) grit collects throughout the canopy in both open country and tropical rain forest environments; and 2) the sizes and concentrations of dust particles accumulated over a fixed period of time differ depending on site location and season of investigation. These results may hold important implications for the interpretation of microwear on primate teeth.Item Open Access Mechanical defenses in leaves eaten by Costa Rican howling monkeys (Alouatta palliata).(Am J Phys Anthropol, 2006-01) Teaford, MF; Lucas, PW; Ungar, PS; Glander, KEPrimate species often eat foods of different physical properties. This may have implications for tooth structure and wear in those species. The purpose of this study was to examine the mechanical defenses of leaves eaten by Alouatta palliata from different social groups at Hacienda La Pacifica in Costa Rica. Leaves were sampled from the home-ranges of groups living in different microhabitats. Specimens were collected during the wet and dry seasons from the same tree, same plant part, and same degree of development as those eaten by the monkeys. The toughness of over 300 leaves was estimated using a scissors test on a Darvell mechanical tester. Toughness values were compared between social groups, seasons, and locations on the leaves using ANOVA. Representative samples of leaves were also sun-dried for subsequent scanning electron microscopy and energy dispersive x-ray (EDX) analyses in an attempt to locate silica on the leaves. Both forms of mechanical defense (toughness and silica) were found to be at work in the plants at La Pacifica. Fracture toughness varied significantly by location within single leaves, indicating that measures of fracture toughness must be standardized by location on food items. Monkeys made some food choices based on fracture toughness by avoiding the toughest parts of leaves and consuming the least tough portions. Intergroup and seasonal differences in the toughness of foods suggest that subtle differences in resource availability can have a significant impact on diet and feeding in Alouatta palliata. Intergroup differences in the incidence of silica on leaves raise the possibility of matching differences in the rates and patterns of tooth wear.Item Open Access Mechanical defenses in leaves eaten by Costa Rican howling monkeys (Alouatta palliata).(Am J Phys Anthropol, 2006-01) Glander, Kenneth Earl; Lucas, PW; Teaford, Mark F; Ungar, PSPrimate species often eat foods of different physical properties. This may have implications for tooth structure and wear in those species. The purpose of this study was to examine the mechanical defenses of leaves eaten by Alouatta palliata from different social groups at Hacienda La Pacifica in Costa Rica. Leaves were sampled from the home-ranges of groups living in different microhabitats. Specimens were collected during the wet and dry seasons from the same tree, same plant part, and same degree of development as those eaten by the monkeys. The toughness of over 300 leaves was estimated using a scissors test on a Darvell mechanical tester. Toughness values were compared between social groups, seasons, and locations on the leaves using ANOVA. Representative samples of leaves were also sun-dried for subsequent scanning electron microscopy and energy dispersive x-ray (EDX) analyses in an attempt to locate silica on the leaves. Both forms of mechanical defense (toughness and silica) were found to be at work in the plants at La Pacifica. Fracture toughness varied significantly by location within single leaves, indicating that measures of fracture toughness must be standardized by location on food items. Monkeys made some food choices based on fracture toughness by avoiding the toughest parts of leaves and consuming the least tough portions. Intergroup and seasonal differences in the toughness of foods suggest that subtle differences in resource availability can have a significant impact on diet and feeding in Alouatta palliata. Intergroup differences in the incidence of silica on leaves raise the possibility of matching differences in the rates and patterns of tooth wear.