Browsing by Author "Valdivia, Raphael H"
Results Per Page
Sort Options
Item Open Access An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease.(Cell host & microbe, 2018-08) Wang, Liuyang; Pittman, Kelly J; Barker, Jeffrey R; Salinas, Raul E; Stanaway, Ian B; Williams, Graham D; Carroll, Robert J; Balmat, Tom; Ingham, Andy; Gopalakrishnan, Anusha M; Gibbs, Kyle D; Antonia, Alejandro L; eMERGE Network; Heitman, Joseph; Lee, Soo Chan; Jarvik, Gail P; Denny, Joshua C; Horner, Stacy M; DeLong, Mark R; Valdivia, Raphael H; Crosslin, David R; Ko, Dennis CPathogens have been a strong driving force for natural selection. Therefore, understanding how human genetic differences impact infection-related cellular traits can mechanistically link genetic variation to disease susceptibility. Here we report the Hi-HOST Phenome Project (H2P2): a catalog of cellular genome-wide association studies (GWAS) comprising 79 infection-related phenotypes in response to 8 pathogens in 528 lymphoblastoid cell lines. Seventeen loci surpass genome-wide significance for infection-associated phenotypes ranging from pathogen replication to cytokine production. We combined H2P2 with clinical association data from patients to identify a SNP near CXCL10 as a risk factor for inflammatory bowel disease. A SNP in the transcriptional repressor ZBTB20 demonstrated pleiotropy, likely through suppression of multiple target genes, and was associated with viral hepatitis. These data are available on a web portal to facilitate interpreting human genome variation through the lens of cell biology and should serve as a rich resource for the research community.Item Open Access Chlamydia Subversion of Host Lipid Transport: Interactions with Cytoplasmic Lipid Droplets(2009) Cocchiaro, Jordan LindseyThe Chlamydiaceae are Gram-negative, obligate intracellular bacteria that are significant pathogens of humans and animals. Intracellularly, the bacteria reside in a membrane-bound vacuole, called the inclusion, from which they manipulate host processes to create a niche optimal for survival and propagation. Acquisition of host-derived lipids is essential for chlamydial growth, yet the source of lipids and mechanisms of trafficking to the inclusion are not well-established. The inclusion avoids interaction with several classical membrane and lipid transport pathways. In a functional genomic screen to identify host modulating chlamydial proteins, our lab identified cytosolic lipid droplets (LDs) as potential target organelles of Chlamydia. LDs are postulated to function in many cellular processes, such as lipid metabolism and transport, membrane trafficking, and cell signaling; therefore, we hypothesized that LDs may be important for Chlamydia pathogenesis as a source of lipids or as a platform for regulating other cellular functions. Here, we characterize the interaction between eukaryotic LDs and the chlamydial inclusion.
We find that LDs are recruited to the Chlamydia inclusion, chlamydial infection disrupts neutral lipid homeostasis, and pharmacological prevention of LD formation inhibits chlamydial replication. Chlamydia produces proteins (Ldas) that localize with LDs in yeast and mammalian cells when transiently expressed and are exported out of the inclusion to peripheral lipid-rich structures during infection. By electron microscopy and live cell imaging, we observe the translocation of intact LDs into the Chlamydia inclusion lumen. Biochemical and microscopic analysis of LDs from infected cells reveals that LD translocation may occur at specialized subregions of the inclusion membrane. The Chlamydia Lda3 protein is implicated in LD tethering to the inclusion membrane, and displacement of the protective coat protein, ADRP, from LD surfaces. This phenomenon could provide access for lipases to the LD core for utilization by the replicating bacteria. Additionally, the functional domains of Lda3 involved in binding to LD and inclusion membranes are identified.
In these studies, we identify eukaryotic lipid droplets (LDs) as a novel target organelle important for Chlamydia pathogenesis and describe a unique mechanism of whole organelle sequestration not previously observed for bacterial pathogens. These results represent a fundamental shift in our understanding of host interactions with the chlamydial inclusion, and may represent a new area for research in the field of cellular microbiology.
Item Open Access Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells.(PLoS One, 2015) Saka, Hector Alex; Thompson, J Will; Chen, Yi-Shan; Dubois, Laura G; Haas, Joel T; Moseley, Arthur; Valdivia, Raphael HThe obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an "inclusion". Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.Item Open Access Defining the Role of Host Cell Chromatin Traps in Chlamydia trachomatis Pathogenesis(2016) Baxter, Ryan MichaelChlamydia trachomatis (CT) is the most common bacterial agent of sexually transmitted infection and can cause damaging inflammation of the female reproductive tract. As an obligate intracellular pathogen, CT must exit exhausted host cells in a manner that favors successful dissemination. Epithelial cells infected with CT expel decondensed nuclear chromatin at the conclusion of an infectious cycle, and these ensnare CT particles. Whether these chromatin traps benefit the host or the pathogen is not obvious. The overall goal of this work is to begin discerning between these possibilities by determining how chromatin traps impact CT survival following exit and how traps contribute to CT-induced inflammatory processes.
Item Open Access Differential Translocation of Host Cellular Materials into the Chlamydia trachomatis Inclusion Lumen during Chemical Fixation.(PLoS One, 2015) Kokes, Marcela; Valdivia, Raphael HChlamydia trachomatis manipulates host cellular pathways to ensure its proliferation and survival. Translocation of host materials into the pathogenic vacuole (termed 'inclusion') may facilitate nutrient acquisition and various organelles have been observed within the inclusion, including lipid droplets, peroxisomes, multivesicular body components, and membranes of the endoplasmic reticulum (ER). However, few of these processes have been documented in living cells. Here, we survey the localization of a broad panel of subcellular elements and find ER, mitochondria, and inclusion membranes within the inclusion lumen of fixed cells. However, we see little evidence of intraluminal localization of these organelles in live inclusions. Using time-lapse video microscopy we document ER marker translocation into the inclusion lumen during chemical fixation. These intra-inclusion ER elements resist a variety of post-fixation manipulations and are detectable via immunofluorescence microscopy. We speculate that the localization of a subset of organelles may be exaggerated during fixation. Finally, we find similar structures within the pathogenic vacuole of Coxiella burnetti infected cells, suggesting that fixation-induced translocation of cellular materials may occur into the vacuole of a range of intracellular pathogens.Item Open Access Discovery of the Elusive UDP-Diacylglucosamine Hydrolase in the Lipid A Biosynthetic Pathway in Chlamydia trachomatis.(MBio, 2016-03-22) Young, Hayley E; Zhao, Jinshi; Barker, Jeffrey R; Guan, Ziqiang; Valdivia, Raphael H; Zhou, PeiConstitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, includingChlamydia trachomatis Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogenC. trachomatislacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against aC. trachomatisgenomic library using a conditional-lethallpxHmutantEscherichia colistrain, we have identified an open reading frame (Ct461, renamedlpxG) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function inE. coliand catalyzes the conversion of UDP-DAGn to lipid Xin vitro LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity ofC. trachomatis, validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools forC. trachomatisand should be broadly applicable for the functional characterization of other essentialC. trachomatisgenes.IMPORTANCEChlamydia trachomatisis a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of manyChlamydiagenes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against theC. trachomatisgenomic library using a conditional-lethal mutant ofE. coliand identified the missing essential gene in the lipid A biosynthetic pathway, which we designatedlpxG We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activityin vitro Overexpression of LpxG inC. trachomatisleads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating thein vivofunction of LpxG and highlighting the importance of regulated lipid A biosynthesis inC. trachomatis.Item Open Access Engineering of obligate intracellular bacteria: progress, challenges and paradigms.(Nat Rev Microbiol, 2017-06-19) McClure, Erin E; Chávez, Adela S Oliva; Shaw, Dana K; Carlyon, Jason A; Ganta, Roman R; Noh, Susan M; Wood, David O; Bavoil, Patrik M; Brayton, Kelly A; Martinez, Juan J; McBride, Jere W; Valdivia, Raphael H; Munderloh, Ulrike G; Pedra, Joao HFIt is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp., Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host-pathogen interactions.Item Open Access Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli.(2011) Bateman, Stacey LynnEscherichia coli is a typical constituent of the enteric tract in many animals, including humans. However, specialized extraintestinal pathogenic E. colistrains (ExPEC) may transition from benign occupation of the enteric and vaginal tracts to sterile sites such as the urinary tract, bloodstream, and central nervous system. ExPEC isolates of urinary tract origin express type 1 pili as a critical virulence determinant mediating adherence to and invasion into urinary tract tissues. Type 1 pili expression is under epigenetic regulation by a family of site-specific recombinases, including FimX, which is encoded from a genomic islet called PAI-X for Pathogenicity Islet of FimX. A goal of this study was to determine the prevalence of the type 1 pili epigenetic regulator genes (fimB, fimE, fimX, ipuA, ipuB) and associated PAI-X genes (hyxR, hyxA, hyxB) present among an extended, diverse collection of pathogenic and commensal E. coli isolates. Using a new multiplex PCR, fimX and the additional PAI-X genes were found to be highly associated with ExPEC (83.2%) and more prevalent in ExPEC of lower urinary tract origin (87.5%) than upper urinary tract origin (73.6%) or human commensal isolates (20.6%; p < 0.05, all comparisons). Fim-like recombinase genes ipuA and ipuB also had a significant association with ExPEC compared to commensal isolates, but had a low overall prevalence (23.8% vs. 11.1%; p < 0.05). PAI-X also showed a strong positive correlation with the presence of virulence genes in the genomes of pathogenic isolates. Combined, our molecular epidemiology studies indicate PAI-X is highly associated with ExPEC isolates, and its high prevalence suggests a potential role in the ExPEC lifestyle. Further investigation into the regulation of PAI-X factors showed that FimX is also an epigenetic regulator of a LuxR-like response regulator HyxR, encoded on PAI-X. In multiple clinical ExPEC isolates, FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the inversion sites of the type 1 pili promoter and independent of integration host factor IHF. Additional studies into the role of HyxR during ExPEC pathogenesis uncovered that HyxR is involved in regulation of the nitrosative stress response. In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNI), primarily through derepression of hmpA, encoding a nitric oxide detoxifying flavohemoglobin. However, in the macrophage, HyxR expression produced large effects on intracellular survival in the presence and absence of RNI, and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX. ExPEC reside in the enteric tract as commensal reservoirs, but can transition to a pathogenic state by invading normally sterile niches, establishing infection, and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. This study demonstrates the functional versatility of the FimX recombinase and identifies novel epigenetic and transcriptional regulatory controls for ExPEC tolerance to RNI challenge and survival during intracellular macrophage infection. Further investigation of these pathways may shed light on the regulatory cues and programming that provoke the commensal to pathogen transition.Item Open Access Functional Characterization of Type II Secretion in Chlamydia(2017) Snavely, EmilyChlamydiae are obligate intracellular bacteria that infect a wide range of animal hosts. For a successful infection, interaction with the host cell by use of the type II (T2), type III (T3), and type V (T5) secretion systems is needed to secure nutrients and subvert the host innate-immune responses. While some the substrates and functions of the T3 and T5 secretion systems are known, a comprehensive understanding of what proteins constitute T2S substrates is largely lacking. Only one protein has been confirmed to be a T2S effector in C. trachomatis, the protease CPAF. In this work, we investigate the role of the T2SS and CPAF during C. trachomatis infection.
CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cells, rather than artifacts of post lysis degradation. Here we clarify the role played by CPAF in cellular models of infection by analyzing Chlamydia trachomatis mutants deficient for CPAF activity. We identified a mutant in Type II secretion (T2S) that accumulates unprocessed CPAF and two strains with nonsense, loss-of-function mutations in cpa. HeLa cells infected with these mutants did not display cleavage of previously reported CPAF substrates and lysates from HeLa cells infected with either T2S- or CPAF- C. trachomatis did not possess any detectable in vitro CPAF proteolytic activity. CPAF-deficient mutants displayed impaired generation of infectious elementary bodies (EBs), indicating an important role for this protease in the full replicative potential of C. trachomatis. HeLa cells infected with cpa mutant strains were not defective for cellular traits that have been previously attributed to CPAF activity, including resistance to staurosporine-induced apoptosis, altered NFĸB-dependent gene expression, and resistance to reinfection. However, these observations do not imply that previously identified substrates are not targets of processing by CPAF in infected cells. We provide evidence in live cells that CPAF-mediated protein processing of at least two protein targets, vimentin filaments and the nuclear envelope protein Lamin-associated protein 1 (LAP1), a new CPAF substrate, occurs rapidly after the loss of the inclusion membrane integrity, but before loss of plasma membrane permeability and cell lysis. We postulate that CPAF plays a role late in infection, possibly during the stages leading to the dismantling of the infected cell prior to the release of EBs during cell lysis.
We further show defects in T2S impact bacterial attachment to host cells, intracellular growth, the biochemical properties of glycogen, and lytic exit. We sought to understand of the basis of these phenotypes and identify additional substrates of the T2SS which contribute towards them. We use label-free quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) for a comprehensive analysis of proteins present within WT and T2S-defective C. trachomatis bacteria. In combination with immunofluorescence analyses, we present evidence of a defined set of secreted proteins that associate with glycogen in the inclusion during infection and propose this polymer functions in regulating proteins secreted into the inclusion lumen.
Item Open Access Mechanisms of Chlamydia manipulation of host cell biology revealed through genetic approaches(2015) Kokes, MarcelaChlamydia trachomatis is the most common sexually transmitted bacterial pathogen and is the leading cause of preventable blindness worldwide. Chlamydia is particularly intriguing from the perspective of cell biology because it is an obligate intracellular pathogen that manipulates host cellular pathways to ensure its proliferation and survival. This is achieved through a significant remodeling of the host cell’s internal architecture from within a membrane-bound vacuole, termed the inclusion. However, given a previous lack of tools to perform genetic analysis, the mechanisms by which Chlamydia induces host cellular changes remained unclear. Here I present genetic and molecular mechanisms of chlamydial manipulation of the host cytoskeleton and organelles. Using a forward genetics screen, InaC was identified as a necessary factor for the assembly of an F-actin structure surrounding the inclusion. InaC associated with the vacuolar membrane where it recruited Golgi-specific ARF-family GTPases. Actin dynamics and ARF GTPases regulate Golgi morphology and positioning within cells, and InaC acted to redistribute the Golgi to surround the Chlamydia inclusion. These findings suggest that Chlamydia places InaC at the inclusion-cytosolic interface to recruit host ARF GTPases and F-actin to form a platform for rearranging intracellular organelles around the inclusion. The inclusion is also surrounded by the intermediate filament vimentin and the chlamydial protease CPAF cleaves vimentin in vitro. CPAF-dependent remodeling of vimentin occurred selectively in late stages of the infection. In living cells, this cleavage occurred only after a loss of inclusion membrane integrity, suggesting that CPAF cleaves intermediate filaments specifically during chlamydial exit of host cells. In summary, I have implemented recent forward and reverse genetic approaches in Chlamydia to reveal how it employs effector proteins to manipulate the internal organization of cells in novel ways.
Item Open Access Modeling of variables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF protease.(Scientific reports, 2020-10-26) Schott, Benjamin H; Antonia, Alejandro L; Wang, Liuyang; Pittman, Kelly J; Sixt, Barbara S; Barnes, Alyson B; Valdivia, Raphael H; Ko, Dennis CSusceptibility to infectious diseases is determined by a complex interaction between host and pathogen. For infections with the obligate intracellular bacterium Chlamydia trachomatis, variation in immune activation and disease presentation are regulated by both host genetic diversity and pathogen immune evasion. Previously, we discovered a single nucleotide polymorphism (rs2869462) associated with absolute abundance of CXCL10, a pro-inflammatory T-cell chemokine. Here, we report that levels of CXCL10 change during C. trachomatis infection of cultured cells in a manner dependent on both host and pathogen. Linear modeling of cellular traits associated with CXCL10 levels identified a strong, negative correlation with bacterial burden, suggesting that C. trachomatis actively suppresses CXCL10. We identified the pathogen-encoded factor responsible for this suppression as the chlamydial protease- or proteasome-like activity factor, CPAF. Further, we applied our modeling approach to other host cytokines in response to C. trachomatis and found evidence that RANTES, another T-cell chemoattractant, is actively suppressed by Chlamydia. However, this observed suppression of RANTES is not mediated by CPAF. Overall, our results demonstrate that CPAF suppresses CXCL10 to evade the host cytokine response and that modeling of cellular infection parameters can reveal previously unrecognized facets of host-pathogen interactions.Item Open Access Next Gen sequencing tools to derive insights into protein expression and gene function(2017) Bae, SenaHuman physiology is heavily influenced by the colonization of microbes in the gastrointestinal tract. A major roadblock to understanding this process is our inability to genetically manipulate new bacterial species and experimentally assess the function of their genes. In order to map bacterial genes, we describe an application of chemical mutagenesis followed by population-based genomic sequencing. We chose to map genes responsible for motility in Exiguobacterium acetylicum, a representative intestinal Firmicutes bacterium that is intractable to molecular genetic manipulation. We derived strong associations between mutations in 57 E. acetylicum genes and impaired motility and also discovered new motility genes that were previously uncharacterized. We confirmed the genetic link between individual mutations and loss of motility for several of these genes by performing a large-scale analysis of spontaneous suppressor mutations. Furthermore, we generated isogenic strains that allowed us to establish that Exiguobacterium motility is important for the colonization of its vertebrate host.
This methological advance in gene functional analysis of genetically intractable microbes has enabled us to identify 902 essential genes that are directly responsible for growth and survival. This is achieved by large-scale mutant sequencing analysis. By curating the gene list, we assigned the essentiality of genes to uncharacterized genes as well. These results indicate that the genetic dissection of a complex trait, functional annotation of new genes, and the generation of mutant strains can all be accomplished in bacteria without the development of species-specific molecular genetic tools. Ultimately, this advance helps define the role of genes in complex environments.
To investigate the effect of silent mutations in a gene, we have designed and created thousands of AcGFP codon-variant libraries to determine the relationship between codon usage and protein expression. mRNA structures near the initial start codon regions are prominent factor for determining protein expression level, but variation in sequence beyond the start codon region also importantly modulates expression levels.
Item Open Access Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation.(2010) Jin, CongIn recent years, the incidence of allergic asthma as well as the severity of disease has rapidly increased worldwide. Numerous epidemiological studies have related the exacerbation of allergic asthma with exposure to increased ambient particles from air pollutants. However, the mechanism by which particulate allergens (pAg) exacerbate allergic asthma remains undefined. To evaluate this, we modeled environmental pAg induced allergic asthma by exposing mice to polystyrene beads coated with natural allergen extracts. Compared to equal amounts of soluble allergen extracts (sAg), pAg triggered markedly enhanced airway hyper-responsiveness and pulmonary eosinophilia in allergen sensitized mice. The cellular basis for this effect was determined to be mast cells (MCs), as both airway allergic responses were attenuated in MC deficient KitWsh/KitW-sh mice compared to MC reconstituted KitW-sh/KitW-sh mice. The divergent responses of MCs to pAg versus sAg were due to differences in the termination rate of IgE/FcεRI initiated signaling. Following ligation of sAg, IgE/FcεRI rapidly shuttled into a degradative endosome/lysosome pathway. However, following ligation by pAg, IgE/FcεRI migrated into lipid raft enriched compartments and subsequently failed to follow a degradative pathway, which resulted in a prolonged signaling and heightened synthesis of proinflammatory mediators. These observations highlight the overlooked contributions of the particulate nature of allergens and mast cell endocytic circuitry to the aggravation of allergic asthma.Item Open Access Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.(PLoS One, 2014) Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan RMicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.Item Open Access Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton.(eLife, 2018-03-07) Tarbet, Heather J; Dolat, Lee; Smith, Timothy J; Condon, Brett M; O'Brien, E Timothy; Valdivia, Raphael H; Boyce, MichaelIntermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general.Item Open Access Systems for Genetic Analysis in the Obligate Intracellular Pathogen Chlamydia trachomatis(2011) Nguyen, BidongChlamydia trachomatis, a pathogen responsible for major diseases of significant clinical and public health importance, remains poorly characterized because of its intractability to molecular genetic manipulation. The development of a system(s) for genetic analysis would significantly accelerate our ability to identify genes that enable Chlamydia to establish infection, survive within its host, and cause disease. This thesis describes two methods used to assess gene function in Chlamydia and to provide insights into its biology and pathogenesis. The first method described is based on specific inhibitors and is used to probe the role of lipooligosaccharide (LOS), a main lipid components of bacterial outer membranes. Using this approach, we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, blocks the synthesis of LOS in C. trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole ("inclusion") that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of anti-chlamydial agents.
The second part of this thesis describes the development of a system with which to perform forward genetics in C. trachomatis. Forward genetics approaches set out to identify the gene or set of genes that contributes to a specific biological process and usually entails generating random mutations in a large number of organisms, isolating mutants with an aberrant phenotype, and identifying the alleles associated with the mutant phenotype. In this approach, chemical mutagenesis is coupled with whole genome sequencing (WGS) and a system for DNA exchange within infected cells to generate Chlamydia mutants with distinct phenotypes, map the underlying genetic lesions, and generate isogenic strains. We identified mutants with altered glycogen metabolism, including an attenuated strain defective for Type II secretion. The coupling of chemically induced gene variations and WGS to establish genotype-phenotype associations should be broadly applicable to the growing list of microorganisms intractable to traditional genetic mutational analysis.
Item Open Access The C. trachomatis effector protein TepP hijacks host cell signaling pathways to promote bacterial survival during infection.(2017) Carpenter, Victoria KayChlamydia trachomatis is a bacterial pathogen with a large socioeconomic impact: it is the leading cause of preventable blindness worldwide, and the most prevalent sexually transmitted infection in the United States. Despite its importance, relatively little is known about the molecular mechanisms that Chlamydia employs to invade epithelial cells, manipulate the secretory pathway, evade innate immune responses and acquire nutrients from its host. Chlamydia, like many other intracellular pathogens, is known to use a type III secretion mechanism to deliver bacterial effector proteins directly to the host cell cytoplasm. These effectors are thought to be the principle actors involved in co-opting host cell functions. TepP is an effector protein that is pre-loaded into infectious Chlamydia particles, and that is secreted early during infection, but whose function is unknown. We took large-scale, unbiased approaches to identify genes whose transcription is modified during the course of infection in a TepP-dependent manner (microarrays), and proteins that interact with TepP and and/or whose phosphorylation is altered by the absence of TepP (proteomics). We used biochemical techniques, cell biology, and molecular techniques to validate interactions identified using large-scale methods, and to further probe the molecular mechanism underlying these connections. In sum, we have determined that TepP contributes to four major phenotypes: changes in the host cell cytoskeleton, modification of the host cell phosphoproteome, bacterial replication, and interferon-dependent gene activation. We have additionally determined that TepP interacts with the Crk family of host cell adaptor proteins, and the class 1 phosphoinositol-3-kinase (PI3K). Cell lines where the levels or activity of TepP interacting partners were modified by deletion, knockdown, or inhibitors, showed that these host proteins are important for the growth of Chlamydia during infection, but are not required for all TepP-dependent phenotypes. TepP not only interacts with PI3K but also induces its activation during infection. Finally, we have determined that the requirements for phosphorylation of TepP are complex, but that the Src kinases are largely responsible for its phosphorylation. Additionally, Src kinases are required for some TepP-dependent phenotypes, but are not required for the recruitment of TepP-interacting proteins during infection.
Item Open Access The Chlamydia trachomatis Protease CPAF Regulates Secreted Bacterial Effectors and Host Proteins Essential to Virulence(2011) Jorgensen, IneChlamydia trachomatis remains a highly relevant clinical pathogen as it is the causative agent of the most commonly reported sexually transmitted disease in the western hemisphere, and the most common cause of infectious blindness in the developing world. As an obligate intracellular pathogen, Chlamydia employs a vast assay of virulence proteins to hijack and remodel the host cellular machinery to facilitate its growth and dissemination. Besides delivering effector proteins into the host cytoplasm via a conserved type III secretion machinery, Chlamydia encodes components of multiple secretion systems, such as type II and IV. Chapter 3 of this document describes the secretion, processing and localization of two putative autotransporters (Pls1 and Pls2) and their involvement in inclusion expansion.
In recent years, many new chlamydial effector proteins have been described. CPAF (Chlamydial Protease-like Activity Factor) is a secreted serine protease that is emerging as a central virulence protein: it is proposed to play a central role in Chlamydia pathogenesis by cleaving proteins involved in antigen-presentation, apoptosis and cytoskeletal re-arrangements. However, the functional significance of CPAF remains elusive due to the lack of specific inhibitors and Chlamydia mutants. The body of work presented herein demonstrates that in addition to targeting host proteins, CPAF cleaves a subset of early chlamydial effector proteins, including Inc-proteins that reside on the nascent pathogenic vacuole ("inclusion"). The design and development of a CPAF-specific inhibitory peptide demonstrates that these chlamydial effector proteins are true targets of CPAF. This peptide reversed the cleavage of bacterial targets by CPAF both in an in vitro cleavage assay and during infection, indicating that these effectors are bona fide targets. Inhibition of CPAF activity also revealed that this protease regulates multiple facets of chlamydial pathogenesis. CPAF inhibition in infected epithelial cells led to the complete dismantling of the inclusion, secretion of pro-inflammatory cytokines and engagement of an inflammasome-dependent programmed cell death pathway. While fibroblasts defective in various inflammasome components were resistant to Chlamydia-induced cell death, inclusion integrity and bacterial replication was still compromised upon CPAF inhibition, indicating that loss of inclusion integrity was not a consequence of caspase-1 activation. Overall, these findings revealed that CPAF, in addition to regulating host function, directly modulates the activity of secreted effectors and early Inc-proteins. Furthermore, we establish that CPAF is an essential virulence factor that is required to maintain the integrity of the inclusion and prevent the engagement of innate immune programmed cell death pathways in infected epithelial cells. CPAF activity thus remains a compelling mechanism by which intracellular pathogens employ proteolytic events to modify the host environment.
Item Open Access The Chlamydia Trachomatis Protein Interaction Network: Insights into the Unique Composition of the Type Three Secretion System(2008-11-19) Spaeth, Kris EdmundThe Gram-negative bacteria Chlamydia trachomatis is a common sexually transmitted pathogen that can cause severe sequelae including cause pelvic inflammatory disease and sterility. This obligate intracellular pathogen effectively manipulates host cellular functions by secreting virulence factors across its membrane bound vacuole. Identifying these virulence components and how they help in establishing an environment conducive for bacterial growth is central to understanding chlamydial pathogenesis. This is experimentally challenging due to a lack of tools to perform molecular genetic studies. In the absence of genetic tools, we developed a yeast model system to identify and characterize chlamydial proteins involved in virulence mechanisms. In this study we describe the identification of twenty-eight proteins potentially involved in modulating host cellular functions and the secretion of virulence factors into the host. Since the delivery of virulence proteins by a type three secretion (T3S) system is a critical step for Chlamydia, we identified the proteins that interacted with the T3S apparatus by yeast two-hybrid analysis. We discovered several novel interactions between and determined that the C. trachomatis T3S apparatus displayed a similar architecture to that of other T3S systems. Furthermore with these approaches we identified networks of proteins that interacted with the secretion apparatus including a novel secretion chaperone protein. We characterized Ct260/Mcsc one of the putative secretion and demonstrated that it represents a novel class 1B secretion chaperone protein. Unlike other known chaperones, Mcsc directly interact with a conserved component of the T3S apparatus cytoplasmic domain, CdsQ. These finding represents a novel mechanism by which the secretion chaperone protein Ct260 may increase the secretion efficiency of its effector cargo and may reveal new facets of secretory cargo recognition by T3S systems.
Item Open Access The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles.(mSphere, 2017-07) Carpenter, Victoria; Chen, Yi-Shan; Dolat, Lee; Valdivia, Raphael HChlamydia trachomatis delivers multiple type 3 secreted effector proteins to host epithelial cells to manipulate cytoskeletal functions, membrane dynamics, and signaling pathways. TepP is the most abundant effector protein secreted early in infection, but its molecular function is poorly understood. In this report, we provide evidence that TepP is important for bacterial replication in cervical epithelial cells, activation of type I IFN genes, and recruitment of class I phosphoinositide 3-kinases (PI3K) and signaling adaptor protein CrkL to nascent pathogen-containing vacuoles (inclusions). We also show that TepP is a target of tyrosine phosphorylation by Src kinases but that these modifications do not appear to influence the recruitment of PI3K or CrkL. The translocation of TepP correlated with an increase in the intracellular pools of phosphoinositide-(3,4,5)-triphosphate but not the activation of the prosurvival kinase Akt, suggesting that TepP-mediated activation of PI3K is spatially restricted to early inclusions. Furthermore, we linked PI3K activity to the dampening of transcription of type I interferon (IFN)-induced genes early in infection. Overall, these findings indicate that TepP can modulate cell signaling and, potentially, membrane trafficking events by spatially restricted activation of PI3K. IMPORTANCE This article shows that Chlamydia recruits PI3K, an enzyme important for host cell survival and internal membrane functions, to the pathogens inside cells by secreting a scaffolding protein called TepP. TepP enhances Chlamydia replication and dampens the activation of immune responses.