Browsing by Author "Vasquez-Montes, Dennis"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Predictive Analytics for Determining Extended Operative Time in Corrective Adult Spinal Deformity Surgery.(International journal of spine surgery, 2022-04) Passias, Peter G; Poorman, Gregory W; Vasquez-Montes, Dennis; Kummer, Nicholas; Mundis, Gregory; Anand, Neel; Horn, Samantha R; Segreto, Frank A; Passfall, Lara; Krol, Oscar; Diebo, Bassel; Burton, Doug; Buckland, Aaron; Gerling, Michael; Soroceanu, Alex; Eastlack, Robert; Kojo Hamilton, D; Hart, Robert; Schwab, Frank; Lafage, Virginie; Shaffrey, Christopher; Sciubba, Daniel; Bess, Shay; Ames, Christopher; Klineberg, Eric; International Spine Study GroupBackground
More sophisticated surgical techniques for correcting adult spinal deformity (ASD) have increased operative times, adding to physiologic stress on patients and increased complication incidence. This study aims to determine factors associated with operative time using a statistical learning algorithm.Methods
Retrospective review of a prospective multicenter database containing 837 patients undergoing long spinal fusions for ASD. Conditional inference decision trees identified factors associated with skin-to-skin operative time and cutoff points at which factors have a global effect. A conditional variable-importance table was constructed based on a nonreplacement sampling set of 2000 conditional inference trees. Means comparison for the top 15 variables at their respective significant cutoffs indicated effect sizes.Results
Included: 544 surgical ASD patients (mean age: 58.0 years; fusion length 11.3 levels; operative time: 378 minutes). The strongest predictor for operative time was institution/surgeon. Center/surgeons, grouped by decision tree hierarchy, a and b were, on average, 2 hours faster than center/surgeons c-f, who were 43 minutes faster than centers g-j, all P < 0.001. The next most important predictors were, in order, approach (combined vs posterior increases time by 139 minutes, P < 0.001), levels fused (<4 vs 5-9 increased time by 68 minutes, P < 0.050; 5-9 vs < 10 increased time by 47 minutes, P < 0.001), age (age <50 years increases time by 57 minutes, P < 0.001), and patient frailty (score <1.54 increases time by 65 minutes, P < 0.001). Surgical techniques, such as three-column osteotomies (35 minutes), interbody device (45 minutes), and decompression (48 minutes), also increased operative time. Both minor and major complications correlated with <66 minutes of increased operative time. Increased operative time also correlated with increased hospital length of stay (LOS), increased estimated intraoperative blood loss (EBL), and inferior 2-year Oswestry Disability Index (ODI) scores.Conclusions
Procedure location and specific surgeon are the most important factors determining operative time, accounting for operative time increases <2 hours. Surgical approach and number of levels fused were also associated with longer operative times, respectively. Extended operative time correlated with longer LOS, higher EBL, and inferior 2-y ODI outcomes.Clinical relevance
We further identified the poor outcomes associated with extended operative time during surgical correction of ASD, and attributed the useful predictors of time spent in the operating room, including site, surgeon, surgical approach, and the number of levels fused.Level of evidence: 3
Item Open Access Predictive model for distal junctional kyphosis after cervical deformity surgery.(The spine journal : official journal of the North American Spine Society, 2018-12) Passias, Peter G; Vasquez-Montes, Dennis; Poorman, Gregory W; Protopsaltis, Themistocles; Horn, Samantha R; Bortz, Cole A; Segreto, Frank; Diebo, Bassel; Ames, Chris; Smith, Justin; LaFage, Virginie; LaFage, Renaud; Klineberg, Eric; Shaffrey, Chris; Bess, Shay; Schwab, Frank; ISSGBackground context
Distal junctional kyphosis (DJK) is a primary concern of surgeons correcting cervical deformity. Identifying patients and procedures at higher risk of developing this condition is paramount in improving patient selection and care.Purpose
The present study aimed to develop a risk index for DJK development in the first year after surgery.Study design/setting
This is a retrospective review of a prospective multicenter cervical deformity database.Patient sample
Patients over the age of 18 meeting one of the following deformities were included in the study: cervical kyphosis (C2-7 Cobb angle>10°), cervical scoliosis (coronal Cobb angle>10°), positive cervical sagittal imbalance (C2-C7 sagittal vertical axis (SVA)>4 cm or T1-C6>10°), or horizontal gaze impairment (chin-brow vertical angle>25°).Outcome measures
Development of DJK at any time before 1 year.Methods
Distal junctional kyphosis was defined by both clinical diagnosis (by enrolling surgeon) and post hoc identification of development of an angle<-10° from the end of fusion construct to the second distal vertebra, as well as a change in this angle by <-10° from baseline. Conditional Inference Decision Trees were used to identify factors predictive of DJK incidence and the cut-off points at which they have an effect. A conditional Variable-Importance table was constructed based on a non-replacement sampling set of 2,000 Conditional Inference Trees. Twelve influencing factors were found; binary logistic regression for each variable at significant cutoffs indicated their effect size.Results
Statistical analysis included 101 surgical patients (average age: 60.1 years, 58.3% female, body mass index: 30.2) undergoing long cervical deformity correction (mean levels fused: 7.1, osteotomy used: 49.5%, approach: 46.5% posterior, 17.8% anterior, 35.7% combined). In 2 years after surgery, 6% of patients were diagnosed with clinical DJK; however, 23.8% of patients met radiographic definition for DJK. Patients with neurologic symptoms were at risk of DJK (odds ratio [OR]: 3.71, confidence interval [CI]: 0.11-0.63). However, no significant relationship was found between osteoporosis, age, and ambulatory status with DJK incidence. Baseline radiographic malalignments were the most numerous and strong predictors for DJK: (1) C2-T1 tilt>5.33 (OR: 6.94, CI: 2.99-16.14); (2) kyphosis<-50.6° (OR: 5.89, CI: 0.07-0.43); (3) C2-C7 lordosis<-12° (OR: 5.7, CI: 0.08-0.41); (4) T1 slope minus cervical lordosis>36.4 (OR: 5.6, CI: 2.28-13.57); (5) C2-C7 SVA>56.3° (OR: 5.4, CI: 2.20-13.23); and (6) C4_Tilt>56.7 (OR: 5.0, CI: 1.90-13.1). Clinically, combined approaches (OR: 2.67, CI: 1.21-5.89) and usage of Smith-Petersen osteotomy (OR: 2.55, CI: 1.02-6.34) were the most important predictors of DJK.Conclusions
In a surgical cohort of patients with cervical deformity, we found a 23.8% incidence of DJK. Different procedures and patient malalignment predicted incidence of DJK up to 1 year. Preoperative T1 slope-cervical lordosis, cervical kyphosis, SVA, and cervical lordosis all strongly predicted DJK at specific cut-off points. Knowledge of these factors will potentially help direct future study and strategy aimed at minimizing this potentially dramatic occurrence.