Browsing by Author "Veldman, Tim"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.(PLoS One, 2013) Ahn, Sun Hee; Tsalik, Ephraim L; Cyr, Derek D; Zhang, Yurong; van Velkinburgh, Jennifer C; Langley, Raymond J; Glickman, Seth W; Cairns, Charles B; Zaas, Aimee K; Rivers, Emanuel P; Otero, Ronny M; Veldman, Tim; Kingsmore, Stephen F; Kingsmore, Stephen F; Lucas, Joseph; Woods, Christopher W; Ginsburg, Geoffrey S; Fowler, Vance GStaphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host's inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.Item Open Access Host gene expression classifiers diagnose acute respiratory illness etiology.(Sci Transl Med, 2016-01-20) Tsalik, Ephraim L; Henao, Ricardo; Nichols, Marshall; Burke, Thomas; Ko, Emily R; McClain, Micah T; Hudson, Lori L; Mazur, Anna; Freeman, Debra H; Veldman, Tim; Langley, Raymond J; Quackenbush, Eugenia B; Glickman, Seth W; Cairns, Charles B; Jaehne, Anja K; Rivers, Emanuel P; Otero, Ronny M; Zaas, Aimee K; Kingsmore, Stephen F; Lucas, Joseph; Fowler, Vance G; Carin, Lawrence; Ginsburg, Geoffrey S; Woods, Christopher WAcute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.