Browsing by Author "Verkhusha, Vladislav V"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Author Correction: Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein.(Nature methods, 2023-02) Oliinyk, Olena S; Ma, Chenshuo; Pletnev, Sergei; Baloban, Mikhail; Taboada, Carlos; Sheng, Huaxin; Yao, Junjie; Verkhusha, Vladislav VIn the version of this article originally published, the surname of Carlos Taboada was misspelled (Toboada) and has now been corrected in the HTML and PDF versions of the article.Item Open Access Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein.(Nature methods, 2023-01) Oliinyk, Olena S; Ma, Chenshuo; Pletnev, Sergei; Baloban, Mikhail; Taboada, Carlos; Sheng, Huaxin; Yao, Junjie; Verkhusha, Vladislav VApplying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano. miRFP718nano efficiently binds endogenous biliverdin chromophore and brightly fluoresces in mammalian cells and tissues. miRFP718nano has maximal emission at 718 nm and an emission tail in the short-wave infrared (SWIR) region, allowing deep-penetrating off-peak fluorescence imaging in vivo. The miRFP718nano structure reveals the molecular basis of its red shift. We demonstrate superiority of miRFP718nano-enabled SWIR imaging over NIR-I imaging of microbes in the mouse digestive tract, mammalian cells injected into the mouse mammary gland and NF-kB activity in a mouse model of liver inflammation.Item Open Access Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe.(Nat Methods, 2016-01) Yao, Junjie; Kaberniuk, Andrii A; Li, Lei; Shcherbakova, Daria M; Zhang, Ruiying; Wang, Lidai; Li, Guo; Verkhusha, Vladislav V; Wang, Lihong VPhotoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ∼ 100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ∼ 140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales.