Browsing by Author "Vierkant, Robert A"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Restricted Risk of ovarian cancer and inherited variants in relapse-associated genes.(PLoS One, 2010-01-27) Peedicayil, Abraham; Vierkant, Robert A; Hartmann, Lynn C; Fridley, Brooke L; Fredericksen, Zachary S; White, Kristin L; Elliott, Elaine A; Phelan, Catherine M; Tsai, Ya-Yu; Berchuck, Andrew; Iversen, Edwin S; Couch, Fergus J; Peethamabaran, Prema; Larson, Melissa C; Kalli, Kimberly R; Kosel, Matthew L; Shridhar, Vijayalakshmi; Rider, David N; Liebow, Mark; Cunningham, Julie M; Schildkraut, Joellen M; Sellers, Thomas A; Goode, Ellen LBACKGROUND: We previously identified a panel of genes associated with outcome of ovarian cancer. The purpose of the current study was to assess whether variants in these genes correlated with ovarian cancer risk. METHODS AND FINDINGS: Women with and without invasive ovarian cancer (749 cases, 1,041 controls) were genotyped at 136 single nucleotide polymorphisms (SNPs) within 13 candidate genes. Risk was estimated for each SNP and for overall variation within each gene. At the gene-level, variation within MSL1 (male-specific lethal-1 homolog) was associated with risk of serous cancer (p = 0.03); haplotypes within PRPF31 (PRP31 pre-mRNA processing factor 31 homolog) were associated with risk of invasive disease (p = 0.03). MSL1 rs7211770 was associated with decreased risk of serous disease (OR 0.81, 95% CI 0.66-0.98; p = 0.03). SNPs in MFSD7, BTN3A3, ZNF200, PTPRS, and CCND1A were inversely associated with risk (p<0.05), and there was increased risk at HEXIM1 rs1053578 (p = 0.04, OR 1.40, 95% CI 1.02-1.91). CONCLUSIONS: Tumor studies can reveal novel genes worthy of follow-up for cancer susceptibility. Here, we found that inherited markers in the gene encoding MSL1, part of a complex that modifies the histone H4, may decrease risk of invasive serous ovarian cancer.Item Open Access Risk Prediction for Epithelial Ovarian Cancer in 11 United States-Based Case-Control Studies: Incorporation of Epidemiologic Risk Factors and 17 Confirmed Genetic Loci.(Am J Epidemiol, 2016-10-15) Clyde, Merlise A; Palmieri Weber, Rachel; Iversen, Edwin S; Poole, Elizabeth M; Doherty, Jennifer A; Goodman, Marc T; Ness, Roberta B; Risch, Harvey A; Rossing, Mary Anne; Terry, Kathryn L; Wentzensen, Nicolas; Whittemore, Alice S; Anton-Culver, Hoda; Bandera, Elisa V; Berchuck, Andrew; Carney, Michael E; Cramer, Daniel W; Cunningham, Julie M; Cushing-Haugen, Kara L; Edwards, Robert P; Fridley, Brooke L; Goode, Ellen L; Lurie, Galina; McGuire, Valerie; Modugno, Francesmary; Moysich, Kirsten B; Olson, Sara H; Pearce, Celeste Leigh; Pike, Malcolm C; Rothstein, Joseph H; Sellers, Thomas A; Sieh, Weiva; Stram, Daniel; Thompson, Pamela J; Vierkant, Robert A; Wicklund, Kristine G; Wu, Anna H; Ziogas, Argyrios; Tworoger, Shelley S; Schildkraut, Joellen MPreviously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls) from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical logistic regression model for predicting case-control status that included imputation of missing data. We randomly divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this improved model to estimate absolute risk and evaluating it in prospective data sets is warranted.