Browsing by Author "Vogelstein, JT"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Bayesian crack detection in ultra high resolution multimodal images of paintings(2013 18th International Conference on Digital Signal Processing, DSP 2013, 2013-12-06) Cornelis, B; Yang, Y; Vogelstein, JT; Dooms, A; Daubechies, I; Dunson, DThe preservation of our cultural heritage is of paramount importance. Thanks to recent developments in digital acquisition techniques, powerful image analysis algorithms are developed which can be useful non-invasive tools to assist in the restoration and preservation of art. In this paper we propose a semi-supervised crack detection method that can be used for high-dimensional acquisitions of paintings coming from different modalities. Our dataset consists of a recently acquired collection of images of the Ghent Altarpiece (1432), one of Northern Europe's most important art masterpieces. Our goal is to build a classifier that is able to discern crack pixels from the background consisting of non-crack pixels, making optimal use of the information that is provided by each modality. To accomplish this we employ a recently developed non-parametric Bayesian classifier, that uses tensor factorizations to characterize any conditional probability. A prior is placed on the parameters of the factorization such that every possible interaction between predictors is allowed while still identifying a sparse subset among these predictors. The proposed Bayesian classifier, which we will refer to as conditional Bayesian tensor factorization or CBTF, is assessed by visually comparing classification results with the Random Forest (RF) algorithm. © 2013 IEEE.Item Open Access Nonparametric Bayes Modeling of Populations of Networks(Journal of the American Statistical Association, 2017-06-27) Durante, D; Dunson, DB; Vogelstein, JT© 2017 American Statistical Association Replicated network data are increasingly available in many research fields. For example, in connectomic applications, interconnections among brain regions are collected for each patient under study, motivating statistical models which can flexibly characterize the probabilistic generative mechanism underlying these network-valued data. Available models for a single network are not designed specifically for inference on the entire probability mass function of a network-valued random variable and therefore lack flexibility in characterizing the distribution of relevant topological structures. We propose a flexible Bayesian nonparametric approach for modeling the population distribution of network-valued data. The joint distribution of the edges is defined via a mixture model that reduces dimensionality and efficiently incorporates network information within each mixture component by leveraging latent space representations. The formulation leads to an efficient Gibbs sampler and provides simple and coherent strategies for inference and goodness-of-fit assessments. We provide theoretical results on the flexibility of our model and illustrate improved performance—compared to state-of-the-art models—in simulations and application to human brain networks. Supplementary materials for this article are available online.