Browsing by Author "Vu, Tri"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Deep image prior for undersampling high-speed photoacoustic microscopy.(Photoacoustics, 2021-06) Vu, Tri; DiSpirito, Anthony; Li, Daiwei; Wang, Zixuan; Zhu, Xiaoyi; Chen, Maomao; Jiang, Laiming; Zhang, Dong; Luo, Jianwen; Zhang, Yu Shrike; Zhou, Qifa; Horstmeyer, Roarke; Yao, JunjiePhotoacoustic microscopy (PAM) is an emerging imaging method combining light and sound. However, limited by the laser's repetition rate, state-of-the-art high-speed PAM technology often sacrifices spatial sampling density (i.e., undersampling) for increased imaging speed over a large field-of-view. Deep learning (DL) methods have recently been used to improve sparsely sampled PAM images; however, these methods often require time-consuming pre-training and large training dataset with ground truth. Here, we propose the use of deep image prior (DIP) to improve the image quality of undersampled PAM images. Unlike other DL approaches, DIP requires neither pre-training nor fully-sampled ground truth, enabling its flexible and fast implementation on various imaging targets. Our results have demonstrated substantial improvement in PAM images with as few as 1.4 % of the fully sampled pixels on high-speed PAM. Our approach outperforms interpolation, is competitive with pre-trained supervised DL method, and is readily translated to other high-speed, undersampling imaging modalities.Item Open Access Longitudinal intravital imaging of mouse placenta.(Science advances, 2024-03) Zhu, Xiaoyi; Huang, Qiang; Jiang, Laiming; Nguyen, Van-Tu; Vu, Tri; Devlin, Garth; Shaima, Jabbar; Wang, Xiaobei; Chen, Yong; Ma, Lijun; Xiang, Kun; Wang, Ergang; Rong, Qiangzhou; Zhou, Qifa; Kang, Yubin; Asokan, Aravind; Feng, Liping; Hsu, Shiao-Wen D; Shen, Xiling; Yao, JunjieStudying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.Item Open Access Photoacoustic imaging of in vivo hemodynamic responses to sodium nitroprusside.(Journal of biophotonics, 2021-03-26) Zhang, Dong; Li, Ran; Chen, Maomao; Vu, Tri; Sheng, Huaxin; Yang, Wei; Hoffmann, Ulrike; Luo, Jianwen; Yao, JunjieThe in vivo hemodynamic impact of sodium nitroprusside (SNP), a widely used antihypertensive agent, has not been well studied. Here, we applied functional optical-resolution photoacoustic microscopy (OR-PAM) to study the hemodynamic responses to SNP in mice in vivo. As expected, after the application of SNP, the systemic blood pressure (BP) was reduced by 53%. The OR-PAM results show that SNP induced an arterial vasodilation of 24% and 23% in the brain and skin, respectively. A weaker venous vasodilation of 9% and 5% was also observed in the brain and skin, respectively. The results show two different types of blood oxygenation response. In mice with decreased blood oxygenation, the arterial and venous oxygenation was respectively reduced by 6% and 13% in the brain, as well as by 7% and 18% in the skin. In mice with increased blood oxygenation, arterial and venous oxygenation was raised by 4% and 22% in the brain, as well as by 1% and 9% in the skin. We observed venous change clearly lagged the arterial change in the skin, but not in the brain. Our results collectively show a correlation among SNP induced changes in systemic BP, vessel size and blood oxygenation.Item Open Access Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy(Light: Science & Applications, 2022-12) Zhu, Xiaoyi; Huang, Qiang; DiSpirito, Anthony; Vu, Tri; Rong, Qiangzhou; Peng, Xiaorui; Sheng, Huaxin; Shen, Xiling; Zhou, Qifa; Jiang, Laiming; Hoffmann, Ulrike; Yao, JunjieAbstractHigh-speed high-resolution imaging of the whole-brain hemodynamics is critically important to facilitating neurovascular research. High imaging speed and image quality are crucial to visualizing real-time hemodynamics in complex brain vascular networks, and tracking fast pathophysiological activities at the microvessel level, which will enable advances in current queries in neurovascular and brain metabolism research, including stroke, dementia, and acute brain injury. Further, real-time imaging of oxygen saturation of hemoglobin (sO2) can capture fast-paced oxygen delivery dynamics, which is needed to solve pertinent questions in these fields and beyond. Here, we present a novel ultrafast functional photoacoustic microscopy (UFF-PAM) to image the whole-brain hemodynamics and oxygenation. UFF-PAM takes advantage of several key engineering innovations, including stimulated Raman scattering (SRS) based dual-wavelength laser excitation, water-immersible 12-facet-polygon scanner, high-sensitivity ultrasound transducer, and deep-learning-based image upsampling. A volumetric imaging rate of 2 Hz has been achieved over a field of view (FOV) of 11 × 7.5 × 1.5 mm3 with a high spatial resolution of ~10 μm. Using the UFF-PAM system, we have demonstrated proof-of-concept studies on the mouse brains in response to systemic hypoxia, sodium nitroprusside, and stroke. We observed the mouse brain’s fast morphological and functional changes over the entire cortex, including vasoconstriction, vasodilation, and deoxygenation. More interestingly, for the first time, with the whole-brain FOV and micro-vessel resolution, we captured the vasoconstriction and hypoxia simultaneously in the spreading depolarization (SD) wave. We expect the new imaging technology will provide a great potential for fundamental brain research under various pathological and physiological conditions.Item Open Access Three-dimensional super-resolution passive cavitation mapping in laser lithotripsy(IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024-01-01) Li, Daiwei; Wang, Nanchao; Li, Mucong; Mishra, Arpit; Tang, Yuqi; Vu, Tri; Xiang, Gaoming; Chen, Junqin; Lipkin, Michael; Zhong, Pei; Yao, JunjieKidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with the stone damage in LL. Monitoring the cavitation activities during LL is thus crucial to optimizing the stone damage and maximizing LL efficiency. In this study, we have developed three-dimensional super-resolution passive cavitation mapping (3D-SRPCM), in which the cavitation bubble positions can be localized with an accuracy of 40 μm, which is 1/10th of the acoustic diffraction limit. Moreover, the 3D-SRPCM reconstruction speed has been improved by 300 times by adopting a GPU-based sparse-matrix beamforming approach. Using 3D-SRPCM, we studied LL-induced cavitation activities on BegoStones, both in free space of water and confined space of a kidney phantom. The dose-dependence analysis provided by 3D-SRPCM revealed that accumulated impact pressure on the stone surface has the highest correlation with the stone damage. By providing high-resolution cavitation mapping during LL treatment, we expect that 3D-SRPCM may become a powerful tool to improve the clinical LL efficiency and patient outcome.