Browsing by Author "Walsh, Kyle M"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access A pleiotropic ATM variant (rs1800057 C>G) is associated with risk of multiple cancers.(Carcinogenesis, 2021-10-13) Qian, Danwen; Liu, Hongliang; Zhao, Lingling; Luo, Sheng; Walsh, Kyle M; Huang, Jiaoti; Li, Chuan-Yuan; Wei, QingyiATM (ataxia-telangiectasia mutated) is an important cell-cycle checkpoint kinase required for cellular response to DNA damage. Activated by DNA double strand breaks, ATM regulates the activities of many downstream proteins involved in various carcinogenic events. Therefore, ATM or its genetic variants may have a pleiotropic effect in cancer development. We conducted a pleiotropic analysis to evaluate associations between genetic variants of ATM and risk of multiple cancers. With genotyping data extracted from previously published genome-wide association studies of various cancers, we performed multivariate logistic regression analysis, followed by a meta-analysis for each cancer site, to identify cancer risk-associated single-nucleotide polymorphisms (SNPs). In the ASSET two-sided analysis, we found that two ATM SNPs were significantly associated with risk of multiple cancers. One tagging SNP (rs1800057 C>G) was associated with risk of multiple cancers (two-sided P=5.27×10 -7). Because ATM rs1800057 is a missense variant, we also explored the intermediate phenotypes through which this variant may confer risk of multiple cancers and identified a possible immune-mediated effect of this variant. Our findings indicate that genetic variants of ATM may have a pleiotropic effect on cancer risk and thus provide an important insight into common mechanisms of carcinogenesis.Item Open Access Associations between genetic variants of KIF5B, FMN1, and MGAT3 in the cadherin pathway and pancreatic cancer risk.(Cancer medicine, 2020-11-16) Zhao, Lingling; Liu, Hongliang; Luo, Sheng; Moorman, Patricia G; Walsh, Kyle M; Li, Wei; Wei, QingyiBecause the cadherin-mediated signaling pathway promotes cancer progression, we assessed associations between genetic variants in 109 cadherin-related genes and risk of pancreatic cancer (PanC) by using genotyping data from publically available genome-wide association studies (GWAS) datasets comprising 15,423 individuals of European ancestry. After initial single-locus analyses and subsequent meta-analysis with multiple testing correction for 29,963 single-nucleotide polymorphisms (SNPs), 11 SNPs remained statistically significant (p < 0.05). In the stepwise logistic regression analysis, three independent PanC risk-associated SNPs (KIF5B rs211304 C > G, FMN1 rs117648907 C > T, and MGAT3 rs34943118 T > C) remained statistically significant (p < 0.05), with odds ratios of 0.89 (95% confidence interval = 0.82-0.95 and p = 6.93 × 10-4 ), 1.33 (1.13-1.56 and 2.11 × 10-4 ), and 1.11 (1.05-1.17 and 8.10 × 10-5 ), respectively. Combined analysis of unfavorable genotypes of these three independent SNPs showed an upward trend in the genotype-risk association (ptrend < 0.001). Expression quantitative trait loci analyses indicated that the rs211304 G and rs34943118 C alleles were associated with increased mRNA expression levels of KIF5B and MGAT3, respectively (all p < 0.05). Additional bioinformatics prediction suggested that these three SNPs may affect enhancer histone marks that likely have an epigenetic effect on the genes. Our findings provide biological clues for these PanC risk-associated SNPs in cadherin-related genes in European ancestry populations, possibly by regulating the expression of the affected genes. However, our findings need to be validated in additional population, molecular and mechanistic investigations.Item Open Access Associations of novel variants in PIK3C3, INSR and MAP3K4 of the ATM pathway genes with pancreatic cancer risk.(American journal of cancer research, 2020-01) Zhao, Ling-Ling; Liu, Hong-Liang; Luo, Sheng; Walsh, Kyle M; Li, Wei; Wei, QingyiThe ATM serine/threonine kinase (ATM) pathway plays important roles in pancreatic cancer (PanC) development and progression, but the roles of genetic variants of the genes in this pathway in the etiology of PanC are unknown. In the present study, we assessed associations between 31,499 single nucleotide polymorphisms (SNPs) in 198 ATM pathway-related genes and PanC risk using genotyping data from two previously published PanC genome-wide association studies (GWASs) of 15,423 subjects of European ancestry. In multivariable logistic regression analysis, we identified three novel independent SNPs to be significantly associated with PanC risk [PIK3C3 rs76692125 G>A: odds ratio (OR)=1.26, 95% confidence interval (CI)=1.12-1.43 and P=2.07×10-4, INSR rs11668724 G>A: OR=0.89, 95% CI=0.84-0.94 and P=4.21×10-5 and MAP3K4 rs13207108 C>T: OR=0.83, 95% CI=0.75-0.92, P=2.26×10-4]. The combined analysis of these three SNPs exhibited an increased PanC risk in a dose-response manner as the number of unfavorable genotypes increased (P trend<0.0001). The risk-associated rs76692125 A allele was correlated with decreased PIK3C3 mRNA expression levels, while the protective-associated rs11668724 A allele was correlated with increased INSR mRNA expression levels, but additional mechanistic studies of these SNPs are warranted. Once validated, these SNPs may serve as biomarkers for PanC risk in populations of European ancestry.Item Open Access Clonal and microclonal mutational heterogeneity in high hyperdiploid acute lymphoblastic leukemia(Oncotarget, 2017-08-01) de Smith, Adam J; Ojha, Juhi; Francis, Stephen S; Sanders, Erica; Endicott, Alyson A; Hansen, Helen M; Smirnov, Ivan; Termuhlen, Amanda M; Walsh, Kyle M; Metayer, Catherine; Wiemels, Joseph LItem Open Access Congenital human cytomegalovirus infection is associated with decreased transplacental IgG transfer efficiency due to maternal hypergammaglobulinemia.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2021-07-14) Semmes, Eleanor C; Li, Shuk Hang; Hurst, Jillian H; Yang, Zidanyue; Niedzwiecki, Donna; Fouda, Genevieve G; Kurtzberg, Joanne; Walsh, Kyle M; Permar, Sallie RBackground
Placentally-transferred maternal IgG protects against pathogens in early life, yet vertically-transmitted infections can interfere with transplacental IgG transfer. Although human cytomegalovirus (HCMV) is the most common placentally-transmitted viral infection worldwide, the impact of congenital HCMV (cCMV) infection on transplacental IgG transfer has been underexplored.Methods
We evaluated total and antigen-specific maternal and cord blood IgG levels and transplacental IgG transfer efficiency in a U.S-based cohort of 93 mother-infant pairs including 27 cCMV-infected and 66 cCMV-uninfected pairs, of which 29 infants were born to HCMV-seropositive non-transmitting mothers and 37 to HCMV-seronegative mothers. Controls were matched on sex, race/ethnicity, maternal age, and delivery year.Results
Transplacental IgG transfer efficiency was decreased by 23% (95% CI 10-36%, p=0.0079) in cCMV-infected pairs and 75% of this effect (95% CI 28-174%, p=0.0085) was mediated by elevated maternal IgG levels (i.e., hypergammaglobulinemia) in HCMV-transmitting women. Despite reduced transfer efficiency, IgG levels were similar in cord blood from infants with and without cCMV infection.Conclusions
Our results indicate that cCMV infection moderately reduces transplacental IgG transfer efficiency due to maternal hypergammaglobulinemia; however, infants with and without cCMV infection had similar antigen-specific IgG levels, suggesting comparable protection from maternal IgG acquired via transplacental transfer.Item Open Access Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans.(EBioMedicine, 2016-02) David, Sean P; Wang, Ange; Kapphahn, Kristopher; Hedlin, Haley; Desai, Manisha; Henderson, Michael; Yang, Lingyao; Walsh, Kyle M; Schwartz, Ann G; Wiencke, John K; Spitz, Margaret R; Wenzlaff, Angela S; Wrensch, Margaret R; Eaton, Charles B; Furberg, Helena; Mark Brown, W; Goldstein, Benjamin A; Assimes, Themistocles; Tang, Hua; Kooperberg, Charles L; Quesenberry, Charles P; Tindle, Hilary; Patel, Manali I; Amos, Christopher I; Bergen, Andrew W; Swan, Gary E; Stefanick, Marcia LBACKGROUND: Genome-wide association studies have identified polymorphisms linked to both smoking exposure and risk of lung cancer. The degree to which lung cancer risk is driven by increased smoking, genetics, or gene-environment interactions is not well understood. METHODS: We analyzed associations between 28 single nucleotide polymorphisms (SNPs) previously associated with smoking quantity and lung cancer in 7156 African-American females in the Women's Health Initiative (WHI), then analyzed main effects of top nominally significant SNPs and interactions between SNPs, cigarettes per day (CPD) and pack-years for lung cancer in an independent, multi-center case-control study of African-American females and males (1078 lung cancer cases and 822 controls). FINDINGS: Nine nominally significant SNPs for CPD in WHI were associated with incident lung cancer (corrected p-values from 0.027 to 6.09 × 10(-5)). CPD was found to be a nominally significant effect modifier between SNP and lung cancer for six SNPs, including CHRNA5 rs2036527[A](betaSNP*CPD = - 0.017, p = 0.0061, corrected p = 0.054), which was associated with CPD in a previous genome-wide meta-analysis of African-Americans. INTERPRETATION: These results suggest that chromosome 15q25.1 variants are robustly associated with CPD and lung cancer in African-Americans and that the allelic dose effect of these polymorphisms on lung cancer risk is most pronounced in lighter smokers.Item Open Access Genetic determinants of childhood and adult height associated with osteosarcoma risk.(Cancer, 2018-09) Zhang, Chenan; Morimoto, Libby M; de Smith, Adam J; Hansen, Helen M; Gonzalez-Maya, Julio; Endicott, Alyson A; Smirnov, Ivan V; Metayer, Catherine; Wei, Qingyi; Eward, William C; Wiemels, Joseph L; Walsh, Kyle MBACKGROUND:Although increased height has been associated with osteosarcoma risk in previous epidemiologic studies, to the authors' knowledge the relative contribution of stature during different developmental timepoints remains unclear. Furthermore, the question of how genetic determinants of height impact osteosarcoma etiology remains unexplored. Genetic variants associated with stature in previous genome-wide association studies may be biomarkers of osteosarcoma risk. METHODS:The authors tested the associations between osteosarcoma risk and polygenic scores for adult height (416 variants), childhood height (6 variants), and birth length (5 variants) in 864 osteosarcoma cases and 1879 controls of European ancestry. RESULTS:Each standard deviation increase in the polygenic score for adult height, corresponding to a 1.7-cm increase in stature, was found to be associated with a 1.10-fold increase in the risk of osteosarcoma (95% confidence interval [95% CI], 1.01-1.19; P =.027). Each standard deviation increase in the polygenic score for childhood height, corresponding to a 0.5-cm increase in stature, was associated with a 1.10-fold increase in the risk of osteosarcoma (95% CI, 1.01-1.20; P =.023). The polygenic score for birth length was not found to be associated with osteosarcoma risk (P =.11). When adult and childhood height scores were modeled together, they were found to be independently associated with osteosarcoma risk (P =.037 and P = .043, respectively). An expression quantitative trait locus for cartilage intermediate layer protein 2 (CILP2), rs8103992, was significantly associated with osteosarcoma risk after adjustment for multiple comparisons (odds ratio, 1.35; 95% CI, 1.16-1.56 [P = 7.93×10-5 and Padjusted =.034]). CONCLUSIONS:A genetic propensity for taller adult and childhood height attainments contributed independently to osteosarcoma risk in the current study data. These results suggest that the biological pathways affecting normal bone growth may be involved in osteosarcoma etiology.Item Open Access Genetic variants in the liver kinase B1-AMP-activated protein kinase pathway genes and pancreatic cancer risk.(Molecular carcinogenesis, 2019-04-17) Xu, Xinyuan; Qian, Danwen; Liu, Hongliang; Cruz, Diana; Luo, Sheng; Walsh, Kyle M; Abbruzzese, James L; Zhang, Xuefeng; Wei, QingyiThe liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway has been identified as a new target for cancer therapy, because it controls the glucose and lipid metabolism in response to alterations in nutrients and intracellular energy levels. In the present study, we aimed to identify genetic variants of the LKB1-AMPK pathway genes and their associations with pancreatic cancer (PanC) risk using 15 418 participants of European ancestry from two previously published PanC genome-wide association studies. We found that six novel tagging single-nucleotide polymorphisms (SNPs) (i.e, MAP2 rs35075084 T > deletion, PRKAG2 rs2727572 C > T and rs34852782 A > deletion, TP53 rs9895829 A > G, and RPTOR rs62068300 G > A and rs3751936 G > C) were significantly associated with an increased PanC risk. The multivariate logistic regression model incorporating the number of unfavorable genotypes (NUGs) with adjustment for age and sex showed that carriers with five to six NUGs had an increased PanC risk (odds ratio = 1.24, 95% confidence interval = 1.16-1.32 and P < 0.0001), compared to those with zero to four NUGs. Subsequent expression quantitative trait loci (eQTL) analysis further revealed that these SNPs were associated with significantly altered mRNA expression levels either in 373 normal lymphoblastoid cell lines (TP53 SNP rs9895829, P < 0.05) or in whole blood cells of 369 normal donors from the genotype-tissue expression project (GTEx) database [RPTOR SNP rs60268947 and rs28434589, both in high linkage disequilibrium (r2 > 0.9) withRPTOR rs62068300, P < 0.001]. Collectively, our findings suggest that these novel SNPs in the LKB1-AMPK pathway genes may modify susceptibility to PanC, possibly by influencing gene expression.Item Open Access Genetic variants of the peroxisome proliferator-activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer.(Molecular carcinogenesis, 2020-05-05) Liu, Xiaowen; Qian, Danwen; Liu, Hongliang; Abbruzzese, James L; Luo, Sheng; Walsh, Kyle M; Wei, QingyiBecause the peroxisome proliferator-activated receptor (PPAR) signaling pathway is involved in development and progression of pancreatic cancer, we investigated associations between genetic variants of the PPAR pathway genes and pancreatic cancer risk by using three published genome-wide association study datasets including 8477 cases and 6946 controls of European ancestry. Expression quantitative trait loci (eQTL) analysis was also performed for correlations between genotypes of the identified genetic variants and messenger RNA (mRNA) expression levels of their genes by using available databases of the 1000 Genomes, TCGA, and GTEx projects. In the single-locus logistic regression analysis, we identified 1141 out of 17 532 significant single-nucleotide polymorphisms (SNPs) in 112 PPAR pathway genes. Further multivariate logistic regression analysis identified three independent, potentially functional loci (rs12947620 in MED1, rs11079651 in PRKCA, and rs34367566 in PRKCB) for pancreatic cancer risk (odds ratio [OR] = 1.11, 95% confidence interval [CI], [1.06-1.17], P = 5.46 × 10-5 ; OR = 1.10, 95% CI, [1.04-1.15], P = 1.99 × 10-4 ; and OR = 1.09, 95% CI, [1.04-1.14], P = 3.16 × 10-4 , respectively) among 65 SNPs that passed multiple comparison correction by false discovery rate (< 0.2). When risk genotypes of these three SNPs were combined, carriers with 2 to 3 unfavorable genotypes (NUGs) had a higher risk of pancreatic cancer than those with 0 to 1 NUGs. The eQTL analysis showed that rs34367566 A>AG was associated with decreased expression levels of PRKCB mRNA in 373 lymphoblastoid cell lines. Our findings indicate that genetic variants of the PPAR pathway genes, particularly MED1, PRKCA, and PRKCB, may contribute to susceptibility to pancreatic cancer.Item Open Access Genetic variation associated with childhood and adult stature and risk of MYCN-amplified neuroblastoma.(Cancer medicine, 2020-11) Semmes, Eleanor C; Shen, Erica; Cohen, Jennifer L; Zhang, Chenan; Wei, Qingyi; Hurst, Jillian H; Walsh, Kyle MBackground
Neuroblastoma is the most common pediatric solid tumor. MYCN-amplification is an important negative prognostic indicator and inherited genetic contributions to risk are incompletely understood. Genetic determinants of stature increase risk of several adult and childhood cancers, but have not been studied in neuroblastoma despite elevated neuroblastoma incidence in children with congenital overgrowth syndromes.Methods
We investigated the association between genetic determinants of height and neuroblastoma risk in 1538 neuroblastoma cases, stratified by MYCN-amplification status, and compared to 3390 European-ancestry controls using polygenic scores for birth length (five variants), childhood height (six variants), and adult height (413 variants). We further examined the UK Biobank to evaluate the association of known neuroblastoma risk loci and stature.Results
An increase in the polygenic score for childhood stature, corresponding to a ~0.5 cm increase in pre-pubertal height, was associated with greater risk of MYCN-amplified neuroblastoma (OR = 1.14, P = .047). An increase in the polygenic score for adult stature, corresponding to a ~1.7 cm increase in adult height attainment, was associated with decreased risk of MYCN-amplified neuroblastoma (OR = 0.87, P = .047). These associations persisted in case-case analyses comparing MYCN-amplified to MYCN-unamplified neuroblastoma. No polygenic height scores were associated with MYCN-unamplified neuroblastoma risk. Previously identified genome-wide association study hits for neuroblastoma (N = 10) were significantly enriched for association with both childhood (P = 4.0 × 10-3 ) and adult height (P = 8.9 × 10-3 ) in >250 000 UK Biobank study participants.Conclusions
Genetic propensity to taller childhood height and shorter adult height were associated with MYCN-amplified neuroblastoma risk, suggesting that biological pathways affecting growth trajectories and pubertal timing may contribute to MYCN-amplified neuroblastoma etiology.Item Open Access Insurance status as a mediator of clinical presentation, type of intervention, and short-term outcomes for patients with metastatic spine disease.(Cancer epidemiology, 2022-02) Price, Meghan J; De la Garza Ramos, Rafael; Dalton, Tara; McCray, Edwin; Pennington, Zach; Erickson, Melissa; Walsh, Kyle M; Yassari, Reza; Sciubba, Daniel M; Goodwin, Andrea N; Goodwin, C RoryBackground
It is well established that insurance status is a mediator of disease management, treatment course, and clinical outcomes in cancer patients. Our study assessed differences in clinical presentation, treatment course, mortality rates, and in-hospital complications for patients admitted to the hospital with late-stage cancer - specifically, metastatic spine disease (MSD), by insurance status.Methods
The United States National Inpatient Sample (NIS) database (2012-2014) was queried to identify patients with visceral metastases, metastatic spinal cord compression (MSCC) or pathological fracture of the spine in the setting of cancer. Clinical presentation, type of intervention, mortality rates, and in-hospital complications were compared amongst patients by insurance coverage (Medicare, Medicaid, commercial or unknown). Multivariable logistical regression and age sensitivity analyses were performed.Results
A total of 48,560 MSD patients were identified. Patients with Medicaid coverage presented with significantly higher rates of MSCC (p < 0.001), paralysis (0.008), and visceral metastases (p < 0.001). Patients with commercial insurance were more likely to receive surgical intervention (OR 1.43; p < 0.001). Patients with Medicaid < 65 had higher rates of prolonged length of stay (PLOS) (OR 1.26; 95% CI, 1.01-1.55; p = 0.040) while both Medicare and Medicaid patients < 65 were more likely to have non-routine discharges. In-hospital mortality rates were significantly higher for patients with Medicaid (OR 2.66; 95% CI 1.20-5.89; p = 0.016) and commercial insurance (OR 1.58; 95% CI 1.09-2.27;p = 0.013) older than 65.Conclusion
Given the differing severity in MSD presentation, mortality rates, and rates of PLOS by insurance status, our results identify disparities based on insurance coverage.Item Open Access Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection.(The Journal of clinical investigation, 2022-08) Semmes, Eleanor C; Miller, Itzayana G; Wimberly, Courtney E; Phan, Caroline T; Jenks, Jennifer A; Harnois, Melissa J; Berendam, Stella J; Webster, Helen; Hurst, Jillian H; Kurtzberg, Joanne; Fouda, Genevieve G; Walsh, Kyle M; Permar, Sallie RHuman cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.Item Open Access Pleiotropic MLLT10 variation confers risk of meningioma and estrogen-mediated cancers.(Neuro-oncology advances, 2022-01) Walsh, Kyle M; Zhang, Chenan; Calvocoressi, Lisa; Hansen, Helen M; Berchuck, Andrew; Schildkraut, Joellen M; Bondy, Melissa L; Wrensch, Margaret; Wiemels, Joseph L; Claus, Elizabeth BBackground
Risk of tumors of the breast, ovary, and meninges has been associated with hormonal factors and with one another. Genome-wide association studies (GWAS) identified a meningioma risk locus on 10p12 near previous GWAS hits for breast and ovarian cancers, raising the possibility of genetic pleiotropy.Methods
We performed imputation-based fine-mapping in three case-control datasets of meningioma (927 cases, 790 controls), female breast cancer (28 108 cases, 22 209 controls), and ovarian cancer (25 509 cases, 40 941 controls). Analyses were stratified by sex (meningioma), estrogen receptor (ER) status (breast), and histotype (ovarian), then combined using subset-based meta-analysis in ASSET. Lead variants were assessed for association with additional traits in UK Biobank to identify potential effect-mediators.Results
Two-sided subset-based meta-analysis identified rs7084454, an expression quantitative trait locus (eQTL) near the MLLT10 promoter, as lead variant (5.7 × 10-14). The minor allele was associated with increased risk of meningioma in females (odds ratio (OR) = 1.42, 95% Confidence Interval (95%CI):1.20-1.69), but not males (OR = 1.19, 95%CI: 0.91-1.57). It was positively associated with ovarian (OR = 1.09, 95%CI:1.06-1.12) and ER+ breast (OR = 1.05, 95%CI: 1.02-1.08) cancers, and negatively associated with ER- breast cancer (OR = 0.91, 95%CI: 0.86-0.96). It was also associated with several adiposity traits (P < 5.0 × 10-8), but adjusting for body mass index did not attenuate its association with meningioma. MLLT10 and ESR1 expression were positively correlated in normal meninges (P = .058) and meningioma tumors (P = .0065).Conclusions
We identify a MLLT10 eQTL positively associated with risk of female meningioma, ER+ breast cancer, ovarian cancer, and obesity, and implicate a potential estrogenic mechanism underlying this pleiotropy.Item Open Access Potential Functional Variants in SMC2 and TP53 in the AURORA Pathway Genes and Risk of Pancreatic Cancer.(Carcinogenesis, 2019-02-22) Feng, Yun; Liu, Hongliang; Duan, Bensong; Liu, Zhensheng; Abbruzzese, James; Walsh, Kyle M; Zhang, Xuefeng; Wei, QingyiThe AURORA pathway participates in mitosis and cell division, and alterations in mitosis and cell division can lead to carcinogenesis. Therefore, genetic variants in the AURORA pathway genes may be associated with susceptibility to pancreatic cancer. To test this hypothesis, we used three large, publically available pancreatic cancer genome-wide association studies (GWASs) datasets (PanScan I, II/III and PanC4) to assess the associations of 7,168 single nucleotide polymorphisms (SNPs) in a set of 62 genes of this pathway with pancreatic cancer risk (8,477 cases and 6,946 controls of European ancestry). We identify 15 significant pancreatic cancer risk-associated SNPs in three genes (SMC2, ARHGEF7 and TP53) after correction for multiple comparisons by a false discovery rate (FDR) < 0.20. Through further linkage disequilibrium analysis, SNP functional prediction and stepwise logistic regression analysis, we focused on three SNPs: rs3818626 in SMC2, rs79447092 in ARHGEF7 and rs9895829 in TP53. We found that these three SNPs were associated with pancreatic cancer risk [odds ratio (OR) = 1.12, 95% confidence interval (CI) = 1.07-1.17 and P = 2.20E-06 for the rs3818626 C allele; OR = 0.76, CI = 0.66-0.88 and P = 1.46E-04 for the rs79447092 A allele; and OR = 0.82, CI = 0.74-0.91 and P = 1.51E-04 for the rs9895829 G allele]. Their joint effect as the number of protective genotypes (NPGs) also showed a significant association with pancreatic cancer risk (trend test P ≤ 0.001). Finally, we performed an eQTL analysis and found that rs3818626 and rs9895829 were significantly associated with SMC2 and TP53 mRNA expression levels in 373 lymphoblastoid cell lines, respectively. In conclusion, these three representative SNPs may be potentially susceptibility loci for pancreatic cancer and warrant additional validation.Item Open Access Three novel genetic variants in NRF2 signaling pathway genes are associated with pancreatic cancer risk.(Cancer science, 2019-06) Yang, Wenjun; Liu, Hongliang; Duan, Bensong; Xu, Xinyuan; Carmody, Dennis; Luo, Sheng; Walsh, Kyle M; Abbruzzese, James L; Zhang, Xuefeng; Chen, Xiaoxin; Wei, QingyiPancreatic cancer (PanC) is one of the most lethal solid malignancies, and metastatic PanC is often present at the time of diagnosis. Although several high- and low-penetrance genes have been implicated in PanC, their roles in carcinogenesis remain only partially elucidated. Because the nuclear factor erythroid2-related factor2 (NRF2) signaling pathway is involved in human cancers, we hypothesize that genetic variants in NRF2 pathway genes are associated with PanC risk. To test this hypothesis, we assessed associations between 31 583 common single nucleotide polymorphisms (SNP) in 164 NRF2-related genes and PanC risk using three published genome-wide association study (GWAS) datasets, which included 8474 cases and 6944 controls of European descent. We also carried out expression quantitative trait loci (eQTL) analysis to assess the genotype-phenotype correlation of the identified significant SNP using publicly available data in the 1000 Genomes Project. We found that three novel SNP (ie, rs3124761, rs17458086 and rs1630747) were significantly associated with PanC risk (P = 5.17 × 10-7 , 5.61 × 10-4 and 5.52 × 10-4 , respectively). Combined analysis using the number of unfavorable genotypes (NUG) of these three SNP suggested that carriers of two to three NUG had an increased risk of PanC (P < 0.0001), compared with those carrying zero to one NUG. Furthermore, eQTL analysis showed that both rs3124761 T and rs17458086 C alleles were associated with increased mRNA expression levels of SLC2A6 and SLC2A13, respectively (P < 0.05). In conclusion, genetic variants in NRF2 pathway genes could play a role in susceptibility to PanC, and further functional exploration of the underlying molecular mechanisms is warranted.