Browsing by Author "Wang, Charles"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Cervical Versus Thoracolumbar Spinal Deformities: A Comparison of Baseline Quality-of-Life Burden.(Clinical spine surgery, 2018-12) Passias, Peter G; Poorman, Gregory W; Lafage, Virginie; Smith, Justin; Ames, Christopher; Schwab, Frank; Shaffrey, Chris; Segreto, Frank A; Horn, Samantha R; Bortz, Cole A; Varlotta, Christopher G; Hockley, Aaron; Wang, Charles; Daniels, Alan; Neuman, Brian; Hart, Robert; Burton, Douglas; Javidan, Yashar; Line, Breton; LaFage, Renaud; Bess, Shay; Sciubba, Daniel; ISSGStudy design
Retrospective analysis of 2 prospectively collected multicenter databases, one for cervical deformity (CD) and the other for general adult spinal deformity.Objective
To investigate the relative quality-of-life and disability burden in patients with uncompensated cervical, thoracolumbar, or cervical and thoracolumbar deformities.Summary of background data
The relative quality-of-life burden of cervical and thoracolumbar deformities have never been compared with each other. This may have significant implications when deciding on the appropriate treatment intervention for patients with combined thoracolumbar and cervical deformities.Methods
When defining CD C2-C7 sagittal vertical axis (SVA)>4 cm was used while a C7-S1 SVA>5 cm was used to defined thoracolumbar deformity. Patients with both SVA criteria were defined as "combined." Primary analysis compared patients in the different groups by demographic, comorbidity data, and quality-of-life scores [EuroQOL 5 dimensions questionnaire (EQ-5D)] using t tests. Secondary analysis matched deformity groups with propensity scores matching based on baseline EQ-5D scores. Differences in disease-specific metrics [the Oswestry Disability Index, Neck Disability Index, modified Japanese Orthopaedic Association questionnaire (mJOA)] were analyzed using analysis of variance tests and post hoc analysis.Results
In total, 212 patients were included in our analysis. Patients with CD only had less neurological deficits (mJOA: 14.6) and better EQ-5D (0.746) scores compared with patients with combined deformities (11.9, 0.716), all P<0.05. Regarding propensity score-matched deformity cohorts, 99 patients were matched with similar quality-of-life burden, 33 per deformity cohort. CD only patients had fewer comorbidities (1.03 vs. 2.12 vs. 2.70; P<0.001), whereas patients with combined deformity had more baseline neurological impairment compared with CD only patients (mJOA: 12.00 vs. 14.25; P=0.050).Conclusions
Combined deformity patients were associated with the lowest quality-of-life and highest disability. Furthermore, regarding deformity cohorts matched by similar baseline quality-of-life status (EQ-5D), patients with combined deformities were associated with significantly worse neurological impairments. This finding implies that quality of life may not be a direct reflection of a patient's disability status, especially in patients with combined cervical and thoracolumbar deformities.Level of evidence
Level III.Item Open Access Intraoperative microseizure detection using a high-density micro-electrocorticography electrode array.(Brain communications, 2022-01) Sun, James; Barth, Katrina; Qiao, Shaoyu; Chiang, Chia-Han; Wang, Charles; Rahimpour, Shervin; Trumpis, Michael; Duraivel, Suseendrakumar; Dubey, Agrita; Wingel, Katie E; Rachinskiy, Iakov; Voinas, Alex E; Ferrentino, Breonna; Southwell, Derek G; Haglund, Michael M; Friedman, Allan H; Lad, Shivanand P; Doyle, Werner K; Solzbacher, Florian; Cogan, Gregory; Sinha, Saurabh R; Devore, Sasha; Devinsky, Orrin; Friedman, Daniel; Pesaran, Bijan; Viventi, JonathanOne-third of epilepsy patients suffer from medication-resistant seizures. While surgery to remove epileptogenic tissue helps some patients, 30-70% of patients continue to experience seizures following resection. Surgical outcomes may be improved with more accurate localization of epileptogenic tissue. We have previously developed novel thin-film, subdural electrode arrays with hundreds of microelectrodes over a 100-1000 mm2 area to enable high-resolution mapping of neural activity. Here, we used these high-density arrays to study microscale properties of human epileptiform activity. We performed intraoperative micro-electrocorticographic recordings in nine patients with epilepsy. In addition, we recorded from four patients with movement disorders undergoing deep brain stimulator implantation as non-epileptic controls. A board-certified epileptologist identified microseizures, which resembled electrographic seizures normally observed with clinical macroelectrodes. Recordings in epileptic patients had a significantly higher microseizure rate (2.01 events/min) than recordings in non-epileptic subjects (0.01 events/min; permutation test, P = 0.0068). Using spatial averaging to simulate recordings from larger electrode contacts, we found that the number of detected microseizures decreased rapidly with increasing contact diameter and decreasing contact density. In cases in which microseizures were spatially distributed across multiple channels, the approximate onset region was identified. Our results suggest that micro-electrocorticographic electrode arrays with a high density of contacts and large coverage are essential for capturing microseizures in epilepsy patients and may be beneficial for localizing epileptogenic tissue to plan surgery or target brain stimulation.