Browsing by Author "Wang, Shixia"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay.(Cytometry. Part A : the journal of the International Society for Analytical Cytology, 2018-04) Pollara, Justin; Orlandi, Chiara; Beck, Charles; Edwards, R Whitney; Hu, Yi; Liu, Shuying; Wang, Shixia; Koup, Richard A; Denny, Thomas N; Lu, Shan; Tomaras, Georgia D; DeVico, Anthony; Lewis, George K; Ferrari, GuidoSeveral different assay methodologies have been described for the evaluation of HIV or SIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC). Commonly used assays measure ADCC by evaluating effector cell functions, or by detecting elimination of target cells. Signaling through Fc receptors, cellular activation, cytotoxic granule exocytosis, or accumulation of cytolytic and immune signaling factors have been used to evaluate ADCC at the level of the effector cells. Alternatively, assays that measure killing or loss of target cells provide a direct assessment of the specific killing activity of antibodies capable of ADCC. Thus, each of these two distinct types of assays provides information on only one of the critical components of an ADCC event; either the effector cells involved, or the resulting effect on the target cell. We have developed a simple modification of our previously described high-throughput ADCC GranToxiLux (GTL) assay that uses area scaling analysis (ASA) to facilitate simultaneous quantification of ADCC activity at the target cell level, and assessment of the contribution of natural killer cells and monocytes to the total observed ADCC activity when whole human peripheral blood mononuclear cells are used as a source of effector cells. The modified analysis method requires no additional reagents and can, therefore, be easily included in prospective studies. Moreover, ASA can also often be applied to pre-existing ADCC-GTL datasets. Thus, incorporation of ASA to the ADCC-GTL assay provides an ancillary assessment of the ability of natural and vaccine-induced antibodies to recruit natural killer cells as well as monocytes against HIV or SIV; or to any other field of research for which this assay is applied. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.Item Open Access Profiles of human serum antibody responses elicited by three leading HIV vaccines focusing on the induction of Env-specific antibodies.(PLoS One, 2010-11-09) Vaine, Michael; Wang, Shixia; Liu, Qin; Arthos, James; Montefiori, David; Goepfert, Paul; McElrath, M Juliana; Lu, ShanIn the current report, we compared the specificities of antibody responses in sera from volunteers enrolled in three US NIH-supported HIV vaccine trials using different immunization regimens. HIV-1 Env-specific binding antibody, neutralizing antibody, antibody-dependent cell-mediated cytotoxicity (ADCC), and profiles of antibody specificity were analyzed for human immune sera collected from vaccinees enrolled in the NIH HIV Vaccine Trial Network (HVTN) Study #041 (recombinant protein alone), HVTN Study #203 (poxviral vector prime-protein boost), and the DP6-001 study (DNA prime-protein boost). Vaccinees from HVTN Study #041 had the highest neutralizing antibody activities against the sensitive virus along with the highest binding antibody responses, particularly those directed toward the V3 loop. DP6-001 sera showed a higher frequency of positive neutralizing antibody activities against more resistant viral isolate with a significantly higher CD4 binding site (CD4bs) antibody response compared to both HVTN studies #041 and #203. No differences were found in CD4-induced (CD4i) antibody responses, ADCC activity, or complement activation by Env-specific antibody among these sera. Given recent renewed interest in realizing the importance of antibody responses for next generation HIV vaccine development, different antibody profiles shown in the current report, based on the analysis of a wide range of antibody parameters, provide critical biomarker information for the selection of HIV vaccines for more advanced human studies and, in particular, those that can elicit antibodies targeting conformational-sensitive and functionally conserved epitopes.