Browsing by Author "Wechsler-Reya, Robert J"
Results Per Page
Sort Options
Item Open Access Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues.(Proc Natl Acad Sci U S A, 2007-12-26) Johnson, Carrie E; Huang, Yolanda Y; Parrish, Amanda B; Smith, Michelle I; Vaughn, Allyson E; Zhang, Qian; Wright, Kevin M; Van Dyke, Terry; Wechsler-Reya, Robert J; Kornbluth, Sally; Deshmukh, MohanishBrain tumors are typically resistant to conventional chemotherapeutics, most of which initiate apoptosis upstream of mitochondrial cytochrome c release. In this study, we demonstrate that directly activating apoptosis downstream of the mitochondria, with cytosolic cytochrome c, kills brain tumor cells but not normal brain tissue. Specifically, cytosolic cytochrome c is sufficient to induce apoptosis in glioblastoma and medulloblastoma cell lines. In contrast, primary neurons from the cerebellum and cortex are remarkably resistant to cytosolic cytochrome c. Importantly, tumor tissue from mouse models of both high-grade astrocytoma and medulloblastoma display hypersensitivity to cytochrome c when compared with surrounding brain tissue. This differential sensitivity to cytochrome c is attributed to high Apaf-1 levels in the tumor tissue compared with low Apaf-1 levels in the adjacent brain tissue. These differences in Apaf-1 abundance correlate with differences in the levels of E2F1, a previously identified activator of Apaf-1 transcription. ChIP assays reveal that E2F1 binds the Apaf-1 promoter specifically in tumor tissue, suggesting that E2F1 contributes to the expression of Apaf-1 in brain tumors. Together, these results demonstrate an unexpected sensitivity of brain tumors to postmitochondrial induction of apoptosis. Moreover, they raise the possibility that this phenomenon could be exploited therapeutically to selectively kill brain cancer cells while sparing the surrounding brain parenchyma.Item Open Access Investigating the Fate of Pre-neoplastic Cells in a Mouse Model of Medulloblastoma(2009) Kessler, Jessica DawnStudying the early stages of cancer can provide important insight into the molecular basis of the disease. In many human cancers, such as prostate, pancreatic, and colon cancer, a pre-neoplastic, or intermediate, stage of the disease has been identified. The pre-neoplastic stage is presumed to be a transition during which normal cells undergo malignant transformation. However, the link between the pre-neoplastic cells and end-stage disease has never been formally established. To investigate the fate of such cells, the patched (ptc) mutant mouse, a model for the brain tumor medulloblastoma was used. Pre-neoplastic cells (PNCs) are found in most ptc mutants during early adulthood, but only 15% of these animals develop tumors. Although PNCs are found in mice that develop tumors, the ability of PNCs to give rise to tumors has never been demonstrated directly, and the fate of cells that do not form tumors remains unknown. Genetic fate mapping and orthotopic transplantation provided definitive evidence that PNCs give rise to tumors and showed that the predominant fate of PNCs that do not form tumors is differentiation. Moreover, N-myc, a gene commonly amplified in medulloblastoma, can dramatically alter the fate of PNCs, preventing differentiation and driving progression to tumors. Importantly, N-myc allows PNCs to grow independently of hedgehog signaling, making the resulting tumors resistant to hedgehog antagonists. These studies provide the first direct evidence that PNCs can give rise to tumors, and demonstrate that identification of genetic changes that promote tumor progression is critical for designing effective therapies for cancer.
Item Open Access Molecular Regulators of Stem Cell Fate and Tumor Development in the Cerebellum(2014) Brun, Sonja NicoleMedulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Identifying new treatments will require an understanding of early stages of tumor development - the cell types from which the tumors arise and the signals that regulate their growth - as well as identification of pathways that are critical for the growth and maintenance of established tumors.
In these studies, we first explore the role of WNT signaling in cerebellar progenitors and their potential to serve as cells of origin for WNT-driven tumors. The WNT pathway plays multiple roles in neural development, is crucial for establishment of the embryonic cerebellum, and is highly expressed in a subset of MBs. However, the cell types within the cerebellum that are responsive to WNT signaling remain unknown. We show that expression of activated β-catenin promotes proliferation of cerebellar neural stem cells (NSCs) but not granule neuron precursors (GNPs). Although β-catenin expressing NSCs proliferate in vivo they do not undergo prolonged expansion or neoplastic growth; rather, WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level, mutant NSCs exhibit increased expression of c-Myc, which might account for their transient proliferation, but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21, which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation and that cooperating "second hits" may be required for neoplastic transformation.
In addition to understanding early stages of transformation, identifying vulnerabilities of established tumors will be critical for development of targeted therapies. Our studies in Chapter 3 are focused on the role of Survivin in SHH-driven MB and utility of survivin inhibition as a therapeutic approach for MB. Survivin is an inhibitor of apoptosis protein (IAP) that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB, and when expressed at high levels predicts poor clinical outcome. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Using genetic and pharmacological approaches, we demonstrate that inhibition of Survivin impairs proliferation and survival of both murine and human MB cells. Although Survivin antagonists do not cross the blood-brain barrier, they are capable of impeding growth of MB cells in flank allografts. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease.
Item Open Access Regulation of Cerebellar Development and Tumorigenesis by CXCR4 and by Aurora and Polo-Like Kinases(2013) Markant, Shirley LorettaDuring development, the precise regulation of the processes of proliferation, migration, and differentiation is required to establish proper organ structure and function and to prevent the deregulation that can lead to disease, such as cancer. Improved understanding of the signals that regulate these processes is therefore necessary to both gain insight into the mechanisms by which organ development proceeds and to identify strategies for treating the consequences of deregulation of these processes. In the cerebellum, some of the factors that regulate these processes have been identified but remain incompletely understood. Our studies have focused on the signals that regulate the migration of cerebellar granule neuron progenitors (GNPs) and the contribution of the SDF-1/CXCR4 signaling axis to postnatal cerebellar development. Using conditional knockout mice to delete CXCR4 specifically in GNPs, we show that loss of CXCR4 results in premature migration of a subset of GNPs throughout postnatal development that are capable of proliferation and survival outside of their normal mitogenic niche. Loss of CXCR4 also causes a reduction in the activity of the Sonic hedgehog (SHH) pathway (the primary mitogen for GNPs) but does not affect GNP proliferation, differentiation, or capacity for tumor formation. Our data suggest that while other factors likely contribute, SDF-1/CXCR4 signaling is necessary for proper migration of GNPs throughout cerebellar development.
In addition to understanding the signals that regulate normal development, the identification of vulnerabilities of established tumors is also necessary to improve cancer treatment. One strategy to improve treatment involves targeting the cells that are critical for maintaining tumor growth, known as tumor-propagating cells (TPCs). In the context of the cerebellar tumor medulloblastoma (MB), we have previously identified a population of TPCs in tumors from patched mutant mice that express the cell surface carbohydrate antigen CD15/SSEA-1. Here, we employed multiple approaches in an effort to target these cells, including a biochemical approach to identify molecules that carry the CD15 carbohydrate epitope as well as an immunotoxin approach to specifically target CD15-expressing cells. Unfortunately, these strategies were ultimately unsuccessful, but an alternative approach that recognized a vulnerability of CD15+ cells was identified. We show that CD15+ cells express elevated levels of genes associated with the G2/M phases of the cell cycle, progress more rapidly through the cell cycle than CD15- cells, and contain an increased proportion of cells in G2/M. Exposure of tumor cells to inhibitors of Aurora and Polo-like kinases, key regulators of G2/M, induces cell cycle arrest, apoptosis and enhanced sensitivity to conventional chemotherapy, and treatment of tumor-bearing mice with these agents significantly inhibits tumor progression. Importantly, cells from human patient-derived MB xenografts are also sensitive to Aurora and Polo-like kinase inhibitors. Our findings suggest that targeting G2/M regulators may represent a novel approach for the treatment of human MB.
Item Open Access The Role of FGF Signaling During Granule Neuron Precursor Development and Tumorigenesis(2010) Emmenegger, Brian AndrewDevelopment requires a delicate balance of proliferation and differentiation. Too little proliferation can result in dysfunctional tissues, while prolonged or heightened proliferation can result in tumor formation. This is clearly seen with the granule neuron precursors (GNPs) of the cerebellum. Too little proliferation of these cells during development results in ataxia, whereas too much proliferation results in the cerebellar tumor medulloblastoma. While these cells are known to proliferate in response to Shh, it is not clear what controls the differentiation of these cells in vivo.
Previous work from our lab has identified basic fibroblast growth factor (bFGF) as a candidate differentiation factor for these cells. In this thesis, I characterize some of the cellular and molecular mechanisms involved in FGF-mediated inhibition (FMI) of Shh-induced GNP proliferation. In addition, I employ FGFR knockouts and a bFGF gain-of-function mouse to determine whether FGF signaling is necessary and/or sufficient for differentiation of GNPs during cerebellar development. Finally, the question of whether bFGF can be effective as a therapeutic agent for in vivo tumor treatment is tested in a transplant model.
These experiments indicate that FGF signaling is neither necessary nor sufficient for GNP differentiation during cerebellar development. However, transplanted tumors are potently inhibited by bFGF treatment. Furthermore, FMI is shown to occur around the level of Gli2 processing in the Shh pathway, implying that such a treatment has promise to be widely effective in treatment of Shh-dependent medulloblastomas.