Browsing by Author "Wen, Wei"
Results Per Page
Sort Options
Item Open Access Efficient and Scalable Deep Learning(2019) Wen, WeiDeep Neural Networks (DNNs) can achieve accuracy superior to traditional machine learning models, because of their large learning capacity and the availability of large amounts of labeled data. In general, larger DNNs can obtain higher accuracy. However, there are two obstacles which hinder us building larger DNNs: (1) inference of large DNNs is slow which limits their deployment to small devices; (2) training large DNNs is also slow which slows down research exploration. To remove those obstacles, this dissertation focuses on acceleration of DNN inference and training. To accelerate DNN inference, original DNNs are compressed while keeping original accuracy. More specific, Structurally Sparse Deep Neural Networks (SSDNNs) are proposed to remove neural components. In Convolutional Neural Networks (CNNs), neurons, filters, channels and layers can be removed; in Recurrent Neural Networks (RNNs), hidden sizes can be reduced. The study shows that SSDNNs can achieve higher speedup than sparse DNNs which have non-structured sparsity. Besides SSDNNs, a Force Regularization is proposed to enforce DNNs to lower-rank space, such that DNNs can be decomposed to lower-rank architectures with fewer ranks than traditional methods. The dissertation also demonstrates that SSDNNs and Force Regularization are orthogonal and can be combined for higher speedup. To accelerate DNN training, distributed deep learning is required. However, two problems hinder us using more compute nodes for higher training speed: Communication Bottleneck and Generalization Gap. Communication Bottleneck is that communication time will increase and dominate when the distributed systems scale to many compute nodes. To reduce gradient communication in Stochastic Gradient Descent (SGD), SGD with low-precision gradients (TernGrad) is proposed. Moreover, in distributed deep learning, a large batch size is required to exploit system computing power; unfortunately, accuracy will decrease when the batch size is very large, which is referred to as the Generalization Gap. One hypothesis to explain Generalization Gap is that large-batch SGD sticks at sharp minima. The dissertation proposes a stochastic smoothing (SmoothOut) to escape sharp minima. The dissertation will show that TernGrad overcomes Communication Bottleneck and SmoothOut helps to close the Generalization Gap.
Item Open Access The genetic architecture of the human cerebral cortex.(Science (New York, N.Y.), 2020-03) Grasby, Katrina L; Jahanshad, Neda; Painter, Jodie N; Colodro-Conde, Lucía; Bralten, Janita; Hibar, Derrek P; Lind, Penelope A; Pizzagalli, Fabrizio; Ching, Christopher RK; McMahon, Mary Agnes B; Shatokhina, Natalia; Zsembik, Leo CP; Thomopoulos, Sophia I; Zhu, Alyssa H; Strike, Lachlan T; Agartz, Ingrid; Alhusaini, Saud; Almeida, Marcio AA; Alnæs, Dag; Amlien, Inge K; Andersson, Micael; Ard, Tyler; Armstrong, Nicola J; Ashley-Koch, Allison; Atkins, Joshua R; Bernard, Manon; Brouwer, Rachel M; Buimer, Elizabeth EL; Bülow, Robin; Bürger, Christian; Cannon, Dara M; Chakravarty, Mallar; Chen, Qiang; Cheung, Joshua W; Couvy-Duchesne, Baptiste; Dale, Anders M; Dalvie, Shareefa; de Araujo, Tânia K; de Zubicaray, Greig I; de Zwarte, Sonja MC; den Braber, Anouk; Doan, Nhat Trung; Dohm, Katharina; Ehrlich, Stefan; Engelbrecht, Hannah-Ruth; Erk, Susanne; Fan, Chun Chieh; Fedko, Iryna O; Foley, Sonya F; Ford, Judith M; Fukunaga, Masaki; Garrett, Melanie E; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Green, Melissa J; Groenewold, Nynke A; Grotegerd, Dominik; Gurholt, Tiril P; Gutman, Boris A; Hansell, Narelle K; Harris, Mathew A; Harrison, Marc B; Haswell, Courtney C; Hauser, Michael; Herms, Stefan; Heslenfeld, Dirk J; Ho, New Fei; Hoehn, David; Hoffmann, Per; Holleran, Laurena; Hoogman, Martine; Hottenga, Jouke-Jan; Ikeda, Masashi; Janowitz, Deborah; Jansen, Iris E; Jia, Tianye; Jockwitz, Christiane; Kanai, Ryota; Karama, Sherif; Kasperaviciute, Dalia; Kaufmann, Tobias; Kelly, Sinead; Kikuchi, Masataka; Klein, Marieke; Knapp, Michael; Knodt, Annchen R; Krämer, Bernd; Lam, Max; Lancaster, Thomas M; Lee, Phil H; Lett, Tristram A; Lewis, Lindsay B; Lopes-Cendes, Iscia; Luciano, Michelle; Macciardi, Fabio; Marquand, Andre F; Mathias, Samuel R; Melzer, Tracy R; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Moreira, Jose CV; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Najt, Pablo; Nakahara, Soichiro; Nho, Kwangsik; Olde Loohuis, Loes M; Orfanos, Dimitri Papadopoulos; Pearson, John F; Pitcher, Toni L; Pütz, Benno; Quidé, Yann; Ragothaman, Anjanibhargavi; Rashid, Faisal M; Reay, William R; Redlich, Ronny; Reinbold, Céline S; Repple, Jonathan; Richard, Geneviève; Riedel, Brandalyn C; Risacher, Shannon L; Rocha, Cristiane S; Mota, Nina Roth; Salminen, Lauren; Saremi, Arvin; Saykin, Andrew J; Schlag, Fenja; Schmaal, Lianne; Schofield, Peter R; Secolin, Rodrigo; Shapland, Chin Yang; Shen, Li; Shin, Jean; Shumskaya, Elena; Sønderby, Ida E; Sprooten, Emma; Tansey, Katherine E; Teumer, Alexander; Thalamuthu, Anbupalam; Tordesillas-Gutiérrez, Diana; Turner, Jessica A; Uhlmann, Anne; Vallerga, Costanza Ludovica; van der Meer, Dennis; van Donkelaar, Marjolein MJ; van Eijk, Liza; van Erp, Theo GM; van Haren, Neeltje EM; van Rooij, Daan; van Tol, Marie-José; Veldink, Jan H; Verhoef, Ellen; Walton, Esther; Wang, Mingyuan; Wang, Yunpeng; Wardlaw, Joanna M; Wen, Wei; Westlye, Lars T; Whelan, Christopher D; Witt, Stephanie H; Wittfeld, Katharina; Wolf, Christiane; Wolfers, Thomas; Wu, Jing Qin; Yasuda, Clarissa L; Zaremba, Dario; Zhang, Zuo; Zwiers, Marcel P; Artiges, Eric; Assareh, Amelia A; Ayesa-Arriola, Rosa; Belger, Aysenil; Brandt, Christine L; Brown, Gregory G; Cichon, Sven; Curran, Joanne E; Davies, Gareth E; Degenhardt, Franziska; Dennis, Michelle F; Dietsche, Bruno; Djurovic, Srdjan; Doherty, Colin P; Espiritu, Ryan; Garijo, Daniel; Gil, Yolanda; Gowland, Penny A; Green, Robert C; Häusler, Alexander N; Heindel, Walter; Ho, Beng-Choon; Hoffmann, Wolfgang U; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Jack, Clifford R; Jang, MiHyun; Jansen, Andreas; Kimbrel, Nathan A; Kolskår, Knut; Koops, Sanne; Krug, Axel; Lim, Kelvin O; Luykx, Jurjen J; Mathalon, Daniel H; Mather, Karen A; Mattay, Venkata S; Matthews, Sarah; Mayoral Van Son, Jaqueline; McEwen, Sarah C; Melle, Ingrid; Morris, Derek W; Mueller, Bryon A; Nauck, Matthias; Nordvik, Jan E; Nöthen, Markus M; O'Leary, Daniel S; Opel, Nils; Martinot, Marie-Laure Paillère; Pike, G Bruce; Preda, Adrian; Quinlan, Erin B; Rasser, Paul E; Ratnakar, Varun; Reppermund, Simone; Steen, Vidar M; Tooney, Paul A; Torres, Fábio R; Veltman, Dick J; Voyvodic, James T; Whelan, Robert; White, Tonya; Yamamori, Hidenaga; Adams, Hieab HH; Bis, Joshua C; Debette, Stephanie; Decarli, Charles; Fornage, Myriam; Gudnason, Vilmundur; Hofer, Edith; Ikram, M Arfan; Launer, Lenore; Longstreth, WT; Lopez, Oscar L; Mazoyer, Bernard; Mosley, Thomas H; Roshchupkin, Gennady V; Satizabal, Claudia L; Schmidt, Reinhold; Seshadri, Sudha; Yang, Qiong; Alzheimer’s Disease Neuroimaging Initiative; CHARGE Consortium; EPIGEN Consortium; IMAGEN Consortium; SYS Consortium; Parkinson’s Progression Markers Initiative; Alvim, Marina KM; Ames, David; Anderson, Tim J; Andreassen, Ole A; Arias-Vasquez, Alejandro; Bastin, Mark E; Baune, Bernhard T; Beckham, Jean C; Blangero, John; Boomsma, Dorret I; Brodaty, Henry; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bustillo, Juan R; Cahn, Wiepke; Cairns, Murray J; Calhoun, Vince; Carr, Vaughan J; Caseras, Xavier; Caspers, Svenja; Cavalleri, Gianpiero L; Cendes, Fernando; Corvin, Aiden; Crespo-Facorro, Benedicto; Dalrymple-Alford, John C; Dannlowski, Udo; de Geus, Eco JC; Deary, Ian J; Delanty, Norman; Depondt, Chantal; Desrivières, Sylvane; Donohoe, Gary; Espeseth, Thomas; Fernández, Guillén; Fisher, Simon E; Flor, Herta; Forstner, Andreas J; Francks, Clyde; Franke, Barbara; Glahn, David C; Gollub, Randy L; Grabe, Hans J; Gruber, Oliver; Håberg, Asta K; Hariri, Ahmad R; Hartman, Catharina A; Hashimoto, Ryota; Heinz, Andreas; Henskens, Frans A; Hillegers, Manon HJ; Hoekstra, Pieter J; Holmes, Avram J; Hong, L Elliot; Hopkins, William D; Hulshoff Pol, Hilleke E; Jernigan, Terry L; Jönsson, Erik G; Kahn, René S; Kennedy, Martin A; Kircher, Tilo TJ; Kochunov, Peter; Kwok, John BJ; Le Hellard, Stephanie; Loughland, Carmel M; Martin, Nicholas G; Martinot, Jean-Luc; McDonald, Colm; McMahon, Katie L; Meyer-Lindenberg, Andreas; Michie, Patricia T; Morey, Rajendra A; Mowry, Bryan; Nyberg, Lars; Oosterlaan, Jaap; Ophoff, Roel A; Pantelis, Christos; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Polderman, Tinca JC; Posthuma, Danielle; Rietschel, Marcella; Roffman, Joshua L; Rowland, Laura M; Sachdev, Perminder S; Sämann, Philipp G; Schall, Ulrich; Schumann, Gunter; Scott, Rodney J; Sim, Kang; Sisodiya, Sanjay M; Smoller, Jordan W; Sommer, Iris E; St Pourcain, Beate; Stein, Dan J; Toga, Arthur W; Trollor, Julian N; Van der Wee, Nic JA; van 't Ent, Dennis; Völzke, Henry; Walter, Henrik; Weber, Bernd; Weinberger, Daniel R; Wright, Margaret J; Zhou, Juan; Stein, Jason L; Thompson, Paul M; Medland, Sarah E; Enhancing NeuroImaging Genetics through Meta-Analysis Consortium (ENIGMA)—Genetics working groupThe cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.