Browsing by Author "West, Bruce J"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Beyond the Death of Linear Response: 1/f Optimal Information Transport(2010) Aquino, Gerardo; Bologna, Mauro; Grigolini, Paolo; West, Bruce JNonergodic renewal processes have recently been shown by several authors to be insensitive to periodic perturbations, thereby apparently sanctioning the death of linear response, a building block of nonequilibrium statistical physics. We show that it is possible to go beyond the "death of linear response'' and establish a permanent correlation between an external stimulus and the response of a complex network generating nonergodic renewal processes, by taking as stimulus a similar nonergodic process. The ideal condition of 1/f noise corresponds to a singularity that is expected to be relevant in several experimental conditions.Item Open Access Comment on "Testing Hypotheses about Sun-Climate Complexity Linking"(2010) Scafetta, Nicola; West, Bruce JItem Open Access Spontaneous brain activity as a source of ideal 1/f noise(2009) Allegrini, Paolo; Menicucci, Danilo; Bedini, Remo; Fronzoni, Leone; Gemignani, Angelo; Grigolini, Paolo; West, Bruce J; Paradisi, PaoloWe study the electroencephalogram (EEG) of 30 closed-eye awake subjects with a technique of analysis recently proposed to detect punctual events signaling rapid transitions between different metastable states. After single-EEG-channel event detection, we study global properties of events simultaneously occurring among two or more electrodes termed coincidences. We convert the coincidences into a diffusion process with three distinct rules that can yield the same mu only in the case where the coincidences are driven by a renewal process. We establish that the time interval between two consecutive renewal events driving the coincidences has a waiting-time distribution with inverse power-law index mu approximate to 2 corresponding to ideal 1/f noise. We argue that this discovery, shared by all subjects of our study, supports the conviction that 1/f noise is an optimal communication channel for complex networks as in art or language and may therefore be the channel through which the brain influences complex processes and is influenced by them.