Browsing by Author "Westendorp, Rudi GJ"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A meta-analysis of four genome-wide association studies of survival to age 90 years or older: the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium.(J Gerontol A Biol Sci Med Sci, 2010-05) Newman, Anne B; Walter, Stefan; Lunetta, Kathryn L; Garcia, Melissa E; Slagboom, P Eline; Christensen, Kaare; Arnold, Alice M; Aspelund, Thor; Aulchenko, Yurii S; Benjamin, Emelia J; Christiansen, Lene; D'Agostino, Ralph B; Fitzpatrick, Annette L; Franceschini, Nora; Glazer, Nicole L; Gudnason, Vilmundur; Hofman, Albert; Kaplan, Robert; Karasik, David; Kelly-Hayes, Margaret; Kiel, Douglas P; Launer, Lenore J; Marciante, Kristin D; Massaro, Joseph M; Miljkovic, Iva; Nalls, Michael A; Hernandez, Dena; Psaty, Bruce M; Rivadeneira, Fernando; Rotter, Jerome; Seshadri, Sudha; Smith, Albert V; Taylor, Kent D; Tiemeier, Henning; Uh, Hae-Won; Uitterlinden, André G; Vaupel, James W; Walston, Jeremy; Westendorp, Rudi GJ; Harris, Tamara B; Lumley, Thomas; van Duijn, Cornelia M; Murabito, Joanne MBACKGROUND: Genome-wide association studies (GWAS) may yield insights into longevity. METHODS: We performed a meta-analysis of GWAS in Caucasians from four prospective cohort studies: the Age, Gene/Environment Susceptibility-Reykjavik Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Longevity was defined as survival to age 90 years or older (n = 1,836); the comparison group comprised cohort members who died between the ages of 55 and 80 years (n = 1,955). In a second discovery stage, additional genotyping was conducted in the Leiden Longevity Study cohort and the Danish 1905 cohort. RESULTS: There were 273 single-nucleotide polymorphism (SNP) associations with p < .0001, but none reached the prespecified significance level of 5 x 10(-8). Of the most significant SNPs, 24 were independent signals, and 16 of these SNPs were successfully genotyped in the second discovery stage, with one association for rs9664222, reaching 6.77 x 10(-7) for the combined meta-analysis of CHARGE and the stage 2 cohorts. The SNP lies in a region near MINPP1 (chromosome 10), a well-conserved gene involved in regulation of cellular proliferation. The minor allele was associated with lower odds of survival past age 90 (odds ratio = 0.82). Associations of interest in a homologue of the longevity assurance gene (LASS3) and PAPPA2 were not strengthened in the second stage. CONCLUSION: Survival studies of larger size or more extreme or specific phenotypes may support or refine these initial findings.Item Open Access Evidence from case-control and longitudinal studies supports associations of genetic variation in APOE, CETP, and IL6 with human longevity.(Age (Dordr), 2013-04) Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Suchiman, H Eka D; Jacobsen, Rune; McGue, Matt; Stevnsner, Tinna; Bohr, Vilhelm A; de Craen, Anton JM; Westendorp, Rudi GJ; Schreiber, Stefan; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; Christiansen, LeneIn this study, we investigated 102 single-nucleotide polymorphisms (SNPs) covering the common genetic variation in 16 genes recurrently regarded as candidates for human longevity: APOE; ACE; CETP; HFE; IL6; IL6R; MTHFR; TGFB1; APOA4; APOC3; SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. In a case-control study of 1,089 oldest-old (ages 92-93) and 736 middle-aged Danes, the minor allele frequency (MAF) of rs769449 (APOE) was significantly decreased in the oldest-old, while the MAF of rs9923854 (CETP) was significantly enriched. These effects were supported when investigating 1,613 oldest-old (ages 95-110) and 1,104 middle-aged Germans. rs769449 was in modest linkage equilibrium (R (2)=0.55) with rs429358 of the APOE-ε4 haplotype and adjusting for rs429358 eliminated the association of rs769449, indicating that the association likely reflects the well-known effect of rs429358. Gene-based analysis confirmed the effects of variation in APOE and CETP and furthermore pointed to HSPA14 as a longevity gene. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes, only one SNP, rs2069827 (IL6), was borderline significantly associated with survival from age 92 (P-corrected=0.064). This advantageous effect of the minor allele was supported when investigating a Dutch longitudinal cohort (N=563) of oldest-old (age 85+). Since rs2069827 was located in a putative transcription factor binding site, quantitative RNA expression studies were conducted. However, no difference in IL6 expression was observed between rs2069827 genotype groups. In conclusion, we here support and expand the evidence suggesting that genetic variation in APOE, CETP, and IL6, and possible HSPA14, is associated with human longevity.Item Open Access Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study.(Aging Cell, 2013-04) Beekman, Marian; Blanché, Hélène; Perola, Markus; Hervonen, Anti; Bezrukov, Vladyslav; Sikora, Ewa; Flachsbart, Friederike; Christiansen, Lene; De Craen, Anton JM; Kirkwood, Tom BL; Rea, Irene Maeve; Poulain, Michel; Robine, Jean-Marie; Valensin, Silvana; Stazi, Maria Antonietta; Passarino, Giuseppe; Deiana, Luca; Gonos, Efstathios S; Paternoster, Lavinia; Sørensen, Thorkild IA; Tan, Qihua; Helmer, Quinta; van den Akker, Erik B; Deelen, Joris; Martella, Francesca; Cordell, Heather J; Ayers, Kristin L; Vaupel, James W; Törnwall, Outi; Johnson, Thomas E; Schreiber, Stefan; Lathrop, Mark; Skytthe, Axel; Westendorp, Rudi GJ; Christensen, Kaare; Gampe, Jutta; Nebel, Almut; Houwing-Duistermaat, Jeanine J; Slagboom, Pieternella Eline; Franceschi, Claudio; GEHA consortiumClear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10(-8) ). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10(-5) , respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.Item Open Access Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.(Exp Gerontol, 2012-05) Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H Eka D; de Craen, Anton JM; Westendorp, Rudi GJ; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; McGue, Matt; Christiansen, LeneHere we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.