Browsing by Author "Williams, SH"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Are we looking for loads in all the right places? New research directions for studying the masticatory apparatus of New World monkeys.(Anat Rec (Hoboken), 2011-12) Vinyard, CJ; Taylor, AB; Teaford, MF; Glander, KE; Ravosa, MJ; Rossie, JB; Ryan, TM; Williams, SHNew World monkeys display a wide range of masticatory apparatus morphologies related to their diverse diets and feeding strategies. While primatologists have completed many studies of the platyrrhine masticatory apparatus, particularly morphometric analyses, we collectively acknowledge key shortcomings in our understanding of the function and evolution of the platyrrhine feeding apparatus. Our goal in this contribution is to review several recent, and in most cases ongoing, efforts to address some of the deficits in our knowledge of how the platyrrhine skull is loaded during feeding. We specifically consider three broad research areas: (1) in vivo physiological studies documenting mandibular bone strains during feeding, (2) metric analyses assessing musculoskeletal functional morphology and performance, as well as (3) the initiation of a physiological ecology of feeding that measures in vivo masticatory mechanics in a natural environment. We draw several conclusions from these brief reviews. First, we need better documentation of in vivo strain patterns in the platyrrhine skull during feeding given their empirical role in developing adaptive hypotheses explaining masticatory apparatus form. Second, the greater accuracy of new technologies, such as CT scanning, will allow us to better describe the functional consequences of jaw form. Third, performance studies are generally lacking for platyrrhine jaws, muscles, and teeth and offer exciting avenues for linking form to feeding behavior and diet. Finally, attempts to bridge distinct research agendas, such as collecting in vivo physiological data during feeding in natural environments, present some of the greatest opportunities for novel insights into platyrrhine feeding biology.Item Open Access Measuring Microhabitat Temperature in Arboreal Primates: A Comparison of On-Animal and Stationary Approaches(International Journal of Primatology, 2016-10-01) Thompson, CL; Williams, SH; Glander, KE; Vinyard, CJ© 2016, Springer Science+Business Media New York. Arboreal primates actively navigate a complex thermal environment that exhibits spatial, daily, and seasonal temperature changes. Thus, temperature measurements from stationary recording devices in or near a forest likely do not reflect the thermal microenvironments that primates actually experience. To better understand the thermal variation primates encounter, we attached automated temperature loggers to anklets worn by free-ranging mantled howling monkeys (Alouatta palliata) to record near-animal ambient temperatures. We compared these measures to conventional, stationary temperature measurements taken from within the forest, in nearby open fields, and at a remote weather station 38.6 km from the field site. We also measured temperatures across vertical forest heights and assessed the effects of wind speed, solar radiation, rain, and vapor pressure on primate subcutaneous temperatures (collected via implanted loggers). Ambient temperatures at measurement sites commonly used by researchers differed from those experienced by animals. Moreover, these differences changed between seasons, indicating dynamic shifts in thermal environment occur through space and time. Temperatures increased with height in the forest, with statistically significant, albeit low magnitude, differences between vertical distances of one meter. Near-animal temperatures showed that monkeys selected relatively warmer microhabitats during nighttime temperature lows and relatively cooler microhabitats during the day. Lastly, the thermal variables wind speed, solar radiation, vapor pressure, and rain were statistically associated with primate subcutaneous temperatures. Our data indicate that the temperatures arboreal primates experience are not well reflected by stationary devices. Attaching automated temperature loggers to animals provides a useful tool for more directly assessing primate microhabitat use.Item Open Access Methods for Studying the Ecological Physiology of Feeding in Free-Ranging Howlers (Alouatta palliata) at La Pacifica, Costa Rica(International Journal of Primatology, 2012-06-01) Vinyard, CJ; Glander, KE; Teaford, MF; Thompson, CL; Deffenbaugh, M; Williams, SHWe lack a general understanding of how primates perform physiologically during feeding to cope with the challenges of their natural environments. We here discuss several methods for studying the ecological physiology of feeding in mantled howlers (Alouatta palliata) at La Pacifica, Costa Rica. Our initial physiological effort focuses on recording electromyographic activity (EMG) from the jaw muscles in free-ranging howlers while they feed in their natural forest habitat. We integrate these EMG data with measurements of food material properties, dental wear rates, as well as spatial analyses of resource use and food distribution. Future work will focus on incorporating physiological measures of bone deformation, i. e., bone strain; temperatures; food nutritional data; and hormonal analyses. Collectively, these efforts will help us to better understand the challenges that howlers face in their environment and the physiological mechanisms they employ during feeding. Our initial efforts provide a proof of concept demonstrating the methodological feasibility of studying the physiology of feeding in free-ranging primates. Although howlers offer certain advantages to in vivo field research, many of the approaches described here can be applied to other primates in natural habitats. By collecting physiological data simultaneously with ecological and behavioral data, we will promote a more synthetic understanding of primate feeding and its evolutionary history. © 2012 Springer Science+Business Media, LLC.Item Open Access Telemetry system for assessing jaw-muscle function in free-ranging primates(International Journal of Primatology, 2008-12-01) Williams, SH; Vinyard, CJ; Glander, KE; Deffenbaugh, M; Teaford, MF; Thompson, CLIn vivo laboratory-based studies describing jaw-muscle activity and mandibular bone strain during mastication provide the empirical basis for most evolutionary hypotheses linking primate masticatory apparatus form to diet. However, the laboratory data pose a potential problem for testing predictions of these hypotheses because estimates of masticatory function and performance recorded in the laboratory may lack the appropriate ecological context for understanding adaptation and evolution. For example, in laboratory studies researchers elicit rhythmic chewing using foods that may differ significantly from the diets of wild primates. Because the textural and mechanical properties of foods influence jaw-muscle activity and the resulting strains, chewing behaviors studied in the laboratory may not adequately reflect chewing behaviors of primates feeding in their natural habitats. To circumvent this limitation of laboratory-based studies of primate mastication, we developed a system for recording jaw-muscle electromyograms (EMGs) from free-ranging primates so that researchers can conduct studies of primate jaw-muscle function in vivo in the field. We used the system to record jaw-muscle EMGs from mantled howlers (Alouatta palliata) at Hacienda La Pacifica, Costa Rica. These are the first EMGs recorded from a noncaptive primate feeding in its natural habitat. Further refinements of the system will allow long-term EMG data collection so that researchers can correlate jaw-muscle function with food mechanical properties and behavioral observations. In addition to furthering understanding of primate feeding biology, our work will foster improved adaptive hypotheses explaining the evolution of primate jaw form. © 2008 Springer Science+Business Media, LLC.