Browsing by Author "Williams, Susan H"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access An assessment of skin temperature gradients in a tropical primate using infrared thermography and subcutaneous implants.(J Therm Biol, 2017-01) Thompson, Cynthia L; Scheidel, Caleb; Glander, Kenneth E; Williams, Susan H; Vinyard, Christopher JInfrared thermography has become a useful tool to assess surface temperatures of animals for thermoregulatory research. However, surface temperatures are an endpoint along the body's core-shell temperature gradient. Skin and fur are the peripheral tissues most exposed to ambient thermal conditions and are known to serve as thermosensors that initiate thermoregulatory responses. Yet relatively little is known about how surface temperatures of wild mammals measured by infrared thermography relate to subcutaneous temperatures. Moreover, this relationship may differ with the degree that fur covers the body. To assess the relationship between temperatures and temperature gradients in peripheral tissues between furred and bare areas, we collected data from wild mantled howling monkeys (Alouatta palliata) in Costa Rica. We used infrared thermography to measure surface temperatures of the furred dorsum and bare facial areas of the body, recorded concurrent subcutaneous temperatures in the dorsum, and measured ambient thermal conditions via a weather station. Temperature gradients through cutaneous tissues (subcutaneous-surface temperature) and surface temperature gradients (surface-ambient temperature) were calculated. Our results indicate that there are differences in temperatures and temperature gradients in furred versus bare areas of mantled howlers. Under natural thermal conditions experienced by wild animals, the bare facial areas were warmer than temperatures in the furred dorsum, and cutaneous temperature gradients in the face were more variable than the dorsum, consistent with these bare areas acting as thermal windows. Cutaneous temperature gradients in the dorsum were more closely linked to subcutaneous temperatures, while facial temperature gradients were more heavily influenced by ambient conditions. These findings indicate that despite the insulative properties of fur, for mantled howling monkeys surface temperatures of furred areas still demonstrate a relationship with subcutaneous temperatures. Given that most mammals possess dense fur, this provides insight for using infrared imaging in thermoregulatory studies of wild animals lacking bare skin.Item Open Access Body temperature and thermal environment in a generalized arboreal anthropoid, wild mantled howling monkeys (Alouatta palliata).(Am J Phys Anthropol, 2014-05) Thompson, Cynthia L; Williams, Susan H; Glander, Kenneth E; Teaford, Mark F; Vinyard, Christopher JFree-ranging primates are confronted with the challenge of maintaining an optimal range of body temperatures within a thermally dynamic environment that changes daily, seasonally, and annually. While many laboratory studies have been conducted on primate thermoregulation, we know comparatively little about the thermal pressures primates face in their natural, evolutionarily relevant environment. Such knowledge is critical to understanding the evolution of thermal adaptations in primates and for comparative evaluation of humans' unique thermal adaptations. We examined temperature and thermal environment in free-ranging, mantled howling monkeys (Alouatta palliata) in a tropical dry forest in Guanacaste, Costa Rica. We recorded subcutaneous (Tsc ) and near-animal ambient temperatures (Ta ) from 11 animals over 1586.5 sample hours during wet and dry seasons. Howlers displayed considerable variation in Tsc , which was largely attributable to circadian effects. Despite significant seasonal changes in the ambient thermal environment, howlers showed relatively little evidence for seasonal changes in Tsc . Howlers experienced warm thermal conditions which led to body cooling relative to the environment, and plateaus in Tsc at increasingly warm Ta . They also frequently faced cool thermal conditions (Ta < Tsc ) in which Tsc was markedly elevated compared with Ta . These data add to a growing body of evidence that non-human primates have more labile body temperatures than humans. Our data additionally support a hypothesis that, despite inhabiting a dry tropical environment, howling monkeys experience both warm and cool thermal pressures. This suggests that thermal challenges may be more prevalent for primates than previously thought, even for species living in nonextreme thermal environments.Item Open Access Getting Humans Off Monkeys' Backs: Using Primate Acclimation as a Guide for Habitat Management Efforts.(Integrative and comparative biology, 2020-05-29) Thompson, Cynthia L; Williams, Susan H; Glander, Kenneth E; Teaford, Mark F; Vinyard, Christopher JWild primates face grave conservation challenges, with habitat loss and climate change projected to cause mass extinctions in the coming decades. As large-bodied Neotropical primates, mantled howling monkeys (Alouatta palliata) are predicted to fare poorly under climate change, yet are also known for their resilience in a variety of environments, including highly disturbed habitats. We utilized ecophysiology research on this species to determine the morphological, physiological, and behavioral mechanisms howlers employ to overcome ecological challenges. Our data show that howlers at La Pacifica, Costa Rica are capable of modifying body size. Howlers displayed reduced mass in warmer, drier habitats, seasonal weight changes, frequent within-lifetime weight fluctuations, and gradual increases in body mass over the past four decades. These within-lifetime changes indicate a capacity to modify morphology in a way that can impact animals' energetics and thermodynamics. Howlers are also able to consume foods with a wide variety of food material properties by altering oral processing during feeding. While this capability suggests some capacity to cope with the phenological shifts expected from climate change and increased habitat fragmentation, data on rates of dental microwear warns that these acclimations may also cost dental longevity. Lastly, we found that howlers are able to acclimate to changing thermal pressures. On shorter-term daily scales, howlers use behavioral mechanisms to thermoregulate, including timing activities to avoid heat stress and utilizing cool microhabitats. At the seasonal scale, animals employ hormonal pathways to influence heat production. These lines of evidence cumulatively indicate that howlers possess morphological, physiological, and behavioral mechanisms to acclimate to environmental challenges. As such, howlers' plasticity may facilitate their resilience to climate change and habitat loss. While habitat loss in the tropics is unlikely to abate, our results point to a potential benefit of active management and selective cultivation to yield large, interconnected forest fragments with targeted phenology that provides both a complex physical structure and a diversity of food sources. These steps could assist howlers in using their natural acclimation potential to survive future conservation threats.Item Open Access Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals.(PLoS One, 2016) Druzinsky, Robert E; Balhoff, James P; Crompton, Alfred W; Done, James; German, Rebecca Z; Haendel, Melissa A; Herrel, Anthony; Herring, Susan W; Lapp, Hilmar; Mabee, Paula M; Muller, Hans-Michael; Mungall, Christopher J; Sternberg, Paul W; Van Auken, Kimberly; Vinyard, Christopher J; Williams, Susan H; Wall, Christine EBACKGROUND: In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. DEVELOPMENT AND TESTING OF THE ONTOLOGY: Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. RESULTS AND SIGNIFICANCE: Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.Item Open Access Overview of FEED, the feeding experiments end-user database.(Integr Comp Biol, 2011-08) Wall, Christine E; Vinyard, Christopher J; Williams, Susan H; Gapeyev, Vladimir; Liu, Xianhua; Lapp, Hilmar; German, Rebecca ZThe Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.Item Open Access Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion.(Pain, 2013-08) Chen, Yong; Williams, Susan H; McNulty, Amy L; Hong, Ji Hee; Lee, Suk Hee; Rothfusz, Nicole E; Parekh, Puja K; Moore, Carlene; Gereau, Robert W; Taylor, Andrea B; Wang, Fan; Guilak, Farshid; Liedtke, WolfgangTemporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigeminal ganglion sensory neurons, to TMJ inflammation and pain behavior. We demonstrate here that TRPV4 is critical for TMJ-inflammation-evoked pain behavior in mice and that trigeminal ganglion pronociceptive changes are TRPV4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4(-/-) mice with TMJ inflammation, attenuation of bite force was significantly less than in wildtype (WT) mice. Similar effects were seen with systemic application of a specific TRPV4 inhibitor. TMJ inflammation and mandibular bony changes were apparent after injections of complete Freund adjuvant but were remarkably independent of the Trpv4 genotype. It was intriguing that, as a result of TMJ inflammation, WT mice exhibited significant upregulation of TRPV4 and phosphorylated extracellular-signal-regulated kinase (ERK) in TMJ-innervating trigeminal sensory neurons, which were absent in Trpv4(-/-) mice. Mice with genetically-impaired MEK/ERK phosphorylation in neurons showed resistance to reduction of bite force similar to that of Trpv4(-/-) mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ inflammation and probably functions upstream of MEK/ERK phosphorylation in trigeminal ganglion sensory neurons in vivo. TRPV4 therefore represents a novel pronociceptive target in TMJ inflammation and should be considered a target of interest in human TMJD.Item Open Access Thyroid hormone fluctuations indicate a thermoregulatory function in both a tropical (Alouatta palliata) and seasonally cold-habitat (Macaca fuscata) primate.(Am J Primatol, 2017-11) Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher JThyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT3). For both species, fT3levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT3levels with decreasing recently experienced maximum temperatures, but no relationship between fT3and recently experienced minimum temperatures. Howlers increased fT3levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns.