Browsing by Author "Wilson, Joshua M"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Expanding the Concept of Diagnostic Reference Levels to Noise and Dose Reference Levels in CT.(AJR. American journal of roentgenology, 2019-06-10) Ria, Francesco; Davis, Joseph T; Solomon, Justin B; Wilson, Joshua M; Smith, Taylor B; Frush, Donald P; Samei, EhsanOBJECTIVE. Diagnostic reference levels were developed as guidance for radiation dose in medical imaging and, by inference, diagnostic quality. The objective of this work was to expand the concept of diagnostic reference levels to explicitly include noise of CT examinations to simultaneously target both dose and quality through corresponding reference values. MATERIALS AND METHODS. The study consisted of 2851 adult CT examinations performed with scanners from two manufacturers and two clinical protocols: abdominopelvic CT with IV contrast administration and chest CT without IV contrast administration. An institutional informatics system was used to automatically extract protocol type, patient diameter, volume CT dose index, and noise magnitude from images. The data were divided into five reference patient size ranges. Noise reference level, noise reference range, dose reference level, and dose reference range were defined for each size range. RESULTS. The data exhibited strong dependence between dose and patient size, weak dependence between noise and patient size, and different trends for different manufacturers with differing strategies for tube current modulation. The results suggest size-based reference intervals and levels for noise and dose (e.g., noise reference level and noise reference range of 11.5-12.9 HU and 11.0-14.0 HU for chest CT and 10.1-12.1 HU and 9.4-13.7 HU for abdominopelvic CT examinations) that can be targeted to improve clinical performance consistency. CONCLUSION. New reference levels and ranges, which simultaneously consider image noise and radiation dose information across wide patient populations, were defined and determined for two clinical protocols. The methods of new quantitative constraints may provide unique and useful information about the goal of managing the variability of image quality and dose in clinical CT examinations.Item Open Access Patient-Informed Organ Dose Estimation in Clinical CT: Implementation and Effective Dose Assessment in 1048 Clinical Patients.(AJR. American journal of roentgenology, 2021-01-21) Fu, Wanyi; Ria, Francesco; Segars, William Paul; Choudhury, Kingshuk Roy; Wilson, Joshua M; Kapadia, Anuj J; Samei, EhsanOBJECTIVE. The purpose of this study is to comprehensively implement a patient-informed organ dose monitoring framework for clinical CT and compare the effective dose (ED) according to the patient-informed organ dose with ED according to the dose-length product (DLP) in 1048 patients. MATERIALS AND METHODS. Organ doses for a given examination are computed by matching the topogram to a computational phantom from a library of anthropomorphic phantoms and scaling the fixed tube current dose coefficients by the examination volume CT dose index (CTDIvol) and the tube-current modulation using a previously validated convolution-based technique. In this study, the library was expanded to 58 adult, 56 pediatric, five pregnant, and 12 International Commission on Radiological Protection (ICRP) reference models, and the technique was extended to include multiple protocols, a bias correction, and uncertainty estimates. The method was implemented in a clinical monitoring system to estimate organ dose and organ dose-based ED for 647 abdomen-pelvis and 401 chest examinations, which were compared with DLP-based ED using a t test. RESULTS. For the majority of the organs, the maximum errors in organ dose estimation were 18% and 8%, averaged across all protocols, without and with bias correction, respectively. For the patient examinations, DLP-based ED was significantly different from organ dose-based ED by as much as 190.9% and 234.7% for chest and abdomen-pelvis scans, respectively (mean, 9.0% and 24.3%). The differences were statistically significant (p < .001) and exhibited overestimation for larger-sized patients and underestimation for smaller-sized patients. CONCLUSION. A patient-informed organ dose estimation framework was comprehensively implemented applicable to clinical imaging of adult, pediatric, and pregnant patients. Compared with organ dose-based ED, DLP-based ED may overestimate effective dose for larger-sized patients and underestimate it for smaller-sized patients.Item Open Access Structured mentorship program for the ABR international medical graduates alternate pathway for medical physicists in diagnostic imaging.(Journal of applied clinical medical physics, 2021-01-09) Ria, Francesco; Wilson, Joshua M; Nelson, Jeffrey; Samei, EhsanItem Open Access Target localization using scanner-acquired SPECT data.(Journal of applied clinical medical physics, 2012-05-10) Roper, Justin R; Bowsher, James E; Wilson, Joshua M; Turkington, Timothy G; Yin, Fang-FangTarget localization using single photon emission computed tomography (SPECT) and planar imaging is being investigated for guiding radiation therapy delivery. Previous studies on SPECT-based localization have used computer-simulated or hybrid images with simulated tumors embedded in disease-free patient images where the tumor position is known and localization can be calculated directly. In the current study, localization was studied using scanner-acquired images. Five fillable spheres were placed in a whole body phantom. Sphere-to-background 99mTc radioactivity was 6:1. Ten independent SPECT scans were acquired with a Trionix Triad scanner using three detector trajectories: left lateral 180°, 360°, and right lateral 180°. Scan time was equivalent to 4.5 min. Images were reconstructed with and without attenuation correction. True target locations were estimated from 12 hr SPECT and CT images. From the 12 hr SPECT scan, 45 sets of orthogonal planar images were used to assess target localization; total acquisition time per set was equivalent to 4.5min. A numerical observer localized the center of the targets in the 4.5 min SPECT and planar images. SPECT-based localization errors were compared for the different detector trajectories. Across the four peripheral spheres, and using optimal iteration numbers and postreconstruction smoothing, means and standard deviations in localization errors were 0.90 ± 0.25 mm for proximal 180° trajectories, 1.31 ± 0.51 mm for 360° orbits, and 3.93 ± 1.48 mm for distal 180° trajectories. This rank order in localization performance is predicted by target attenuation and distance from the target to the collimator. For the targets with mean localization errors < 2 mm, attenuation correction reduced localization errors by 0.15 mm on average. The improvement from attenuation correction was 1.0 mm on average for the more poorly localized targets. Attenuation correction typically reduced localization errors, but for well-localized targets, the detector trajectory generally had a larger effect. Localization performance was found to be robust to iteration number and smoothing. Localization was generally worse using planar images as compared with proximal 180° and 360° SPECT scans. Using a proximal detector trajectory and attenuation correction, localization errors were within 2 mm for the three superficial targets, thus supporting the current role in biopsy and surgery, and demonstrating the potential for SPECT imaging inside radiation therapy treatment rooms.Item Open Access Technical Note: Validation of TG 233 phantom methodology to characterize noise and dose in patient CT data.(Med Phys, 2020-02-10) Ria, Francesco; Solomon, Justin; Wilson, Joshua M; Samei, EhsanPURPOSE: Phantoms are useful tools in diagnostic CT, but practical limitations reduce phantoms to being only a limited patient surrogate. Furthermore, a phantom with a single cross sectional area cannot be used to evaluate scanner performance in modern CT scanners that use dose reduction techniques such as Automated Tube Current Modulation (ATCM) and Iterative Reconstruction (IR) algorithms to adapt x-ray flux to patient size, reduce radiation dose, and achieve uniform image noise. A new multi-sized phantom (Mercury Phantom, MP) has been introduced, representing multiple diameters. This work aimed to ascertain if measurements from MP can predict radiation dose and image noise in clinical CT images to prospectively inform protocol design. METHODS: The adult MP design included four different physical diameters (18.5, 23.0, 30.0, 37.0 cm) representing a range of patient sizes. The study included 1457 examinations performed on two scanner models from two vendors, and two clinical protocols (abdominopelvic with and chest without contrast). Attenuating diameter, radiation dose, and noise magnitude (average pixel standard deviation in uniform image) was automatically estimated in patients and in the MP using a previously validated algorithm. An exponential fit of CTDIvol and noise as a function of size was applied to patients and MP data. Lastly, the fit equations from the phantom data were used to fit the patient data. In each patient distribution fit, the normalized root mean square error (nRMSE) values were calculated in the residuals' plots as a metric to indicate how well the phantom data can predict dose and noise in clinical operations as a function of size. RESULTS: For dose across patient size distributions, the difference between nRMSE from patient fit and MP model data prediction ranged between 0.6% and 2.0% (mean 1.2%). For noise across patient size distributions, the nRMSE difference ranged between 0.1% and 4.7% (mean 1.4%). CONCLUSION: The Mercury Phantom provided a close prediction of radiation dose and image noise in clinical patient images. By assessing dose and image quality in a phantom with multiple sizes, protocol parameters can be designed and optimized per patient size in a highly constrained setup to predict clinical scanner and ATCM system performance.