Browsing by Author "Wilson, Richard K"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A high-resolution map of human evolutionary constraint using 29 mammals.(Nature, 2011-10-12) Lindblad-Toh, Kerstin; Garber, Manuel; Zuk, Or; Lin, Michael F; Parker, Brian J; Washietl, Stefan; Kheradpour, Pouya; Ernst, Jason; Jordan, Gregory; Mauceli, Evan; Ward, Lucas D; Lowe, Craig B; Holloway, Alisha K; Clamp, Michele; Gnerre, Sante; Alföldi, Jessica; Beal, Kathryn; Chang, Jean; Clawson, Hiram; Cuff, James; Di Palma, Federica; Fitzgerald, Stephen; Flicek, Paul; Guttman, Mitchell; Hubisz, Melissa J; Jaffe, David B; Jungreis, Irwin; Kent, W James; Kostka, Dennis; Lara, Marcia; Martins, Andre L; Massingham, Tim; Moltke, Ida; Raney, Brian J; Rasmussen, Matthew D; Robinson, Jim; Stark, Alexander; Vilella, Albert J; Wen, Jiayu; Xie, Xiaohui; Zody, Michael C; Broad Institute Sequencing Platform and Whole Genome Assembly Team; Baldwin, Jen; Bloom, Toby; Chin, Chee Whye; Heiman, Dave; Nicol, Robert; Nusbaum, Chad; Young, Sarah; Wilkinson, Jane; Worley, Kim C; Kovar, Christie L; Muzny, Donna M; Gibbs, Richard A; Baylor College of Medicine Human Genome Sequencing Center Sequencing Team; Cree, Andrew; Dihn, Huyen H; Fowler, Gerald; Jhangiani, Shalili; Joshi, Vandita; Lee, Sandra; Lewis, Lora R; Nazareth, Lynne V; Okwuonu, Geoffrey; Santibanez, Jireh; Warren, Wesley C; Mardis, Elaine R; Weinstock, George M; Wilson, Richard K; Genome Institute at Washington University; Delehaunty, Kim; Dooling, David; Fronik, Catrina; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Minx, Patrick; Sodergren, Erica; Birney, Ewan; Margulies, Elliott H; Herrero, Javier; Green, Eric D; Haussler, David; Siepel, Adam; Goldman, Nick; Pollard, Katherine S; Pedersen, Jakob S; Lander, Eric S; Kellis, ManolisThe comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.Item Open Access Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species.(Mol Ecol, 2010-03) Künstner, Axel; Wolf, Jochen BW; Backström, Niclas; Whitney, Osceola; Balakrishnan, Christopher N; Day, Lainy; Edwards, Scott V; Janes, Daniel E; Schlinger, Barney A; Wilson, Richard K; Jarvis, Erich D; Warren, Wesley C; Ellegren, HansNext-generation sequencing technology provides an attractive means to obtain large-scale sequence data necessary for comparative genomic analysis. To analyse the patterns of mutation rate variation and selection intensity across the avian genome, we performed brain transcriptome sequencing using Roche 454 technology of 10 different non-model avian species. Contigs from de novo assemblies were aligned to the two available avian reference genomes, chicken and zebra finch. In total, we identified 6499 different genes across all 10 species, with approximately 1000 genes found in each full run per species. We found evidence for a higher mutation rate of the Z chromosome than of autosomes (male-biased mutation) and a negative correlation between the neutral substitution rate (d(S)) and chromosome size. Analyses of the mean d(N)/d(S) ratio (omega) of genes across chromosomes supported the Hill-Robertson effect (the effect of selection at linked loci) and point at stochastic problems with omega as an independent measure of selection. Overall, this study demonstrates the usefulness of next-generation sequencing for obtaining genomic resources for comparative genomic analysis of non-model organisms.Item Open Access Comparative genomics reveals insights into avian genome evolution and adaptation.(Science, 2014-12-12) Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Avian Genome Consortium; Jarvis, Erich D; Gilbert, M Thomas P; Wang, JunBirds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.Item Open Access The genome of a songbird.(Nature, 2010-04-01) Warren, Wesley C; Clayton, David F; Ellegren, Hans; Arnold, Arthur P; Hillier, Ladeana W; Künstner, Axel; Searle, Steve; White, Simon; Vilella, Albert J; Fairley, Susan; Heger, Andreas; Kong, Lesheng; Ponting, Chris P; Jarvis, Erich D; Mello, Claudio V; Minx, Pat; Lovell, Peter; Velho, Tarciso AF; Ferris, Margaret; Balakrishnan, Christopher N; Sinha, Saurabh; Blatti, Charles; London, Sarah E; Li, Yun; Lin, Ya-Chi; George, Julia; Sweedler, Jonathan; Southey, Bruce; Gunaratne, Preethi; Watson, Michael; Nam, Kiwoong; Backström, Niclas; Smeds, Linnea; Nabholz, Benoit; Itoh, Yuichiro; Whitney, Osceola; Pfenning, Andreas R; Howard, Jason; Völker, Martin; Skinner, Bejamin M; Griffin, Darren K; Ye, Liang; McLaren, William M; Flicek, Paul; Quesada, Victor; Velasco, Gloria; Lopez-Otin, Carlos; Puente, Xose S; Olender, Tsviya; Lancet, Doron; Smit, Arian FA; Hubley, Robert; Konkel, Miriam K; Walker, Jerilyn A; Batzer, Mark A; Gu, Wanjun; Pollock, David D; Chen, Lin; Cheng, Ze; Eichler, Evan E; Stapley, Jessica; Slate, Jon; Ekblom, Robert; Birkhead, Tim; Burke, Terry; Burt, David; Scharff, Constance; Adam, Iris; Richard, Hugues; Sultan, Marc; Soldatov, Alexey; Lehrach, Hans; Edwards, Scott V; Yang, Shiaw-Pyng; Li, Xiaoching; Graves, Tina; Fulton, Lucinda; Nelson, Joanne; Chinwalla, Asif; Hou, Shunfeng; Mardis, Elaine R; Wilson, Richard KThe zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.Item Open Access The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling.(Genome Biol Evol, 2015-11-27) Schaap, Pauline; Barrantes, Israel; Minx, Pat; Sasaki, Narie; Anderson, Roger W; Bénard, Marianne; Biggar, Kyle K; Buchler, Nicolas E; Bundschuh, Ralf; Chen, Xiao; Fronick, Catrina; Fulton, Lucinda; Golderer, Georg; Jahn, Niels; Knoop, Volker; Landweber, Laura F; Maric, Chrystelle; Miller, Dennis; Noegel, Angelika A; Peace, Rob; Pierron, Gérard; Sasaki, Taeko; Schallenberg-Rüdinger, Mareike; Schleicher, Michael; Singh, Reema; Spaller, Thomas; Storey, Kenneth B; Suzuki, Takamasa; Tomlinson, Chad; Tyson, John J; Warren, Wesley C; Werner, Ernst R; Werner-Felmayer, Gabriele; Wilson, Richard K; Winckler, Thomas; Gott, Jonatha M; Glöckner, Gernot; Marwan, WolfgangPhysarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.