Browsing by Author "Winter, Peter S"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access ABL kinases regulate the stabilization of HIF-1α and MYC through CPSF1.(Proceedings of the National Academy of Sciences of the United States of America, 2023-04) Mayro, Benjamin; Hoj, Jacob P; Cerda-Smith, Christian G; Hutchinson, Haley M; Caminear, Michael W; Thrash, Hannah L; Winter, Peter S; Wardell, Suzanne E; McDonnell, Donald P; Wu, Colleen; Wood, Kris C; Pendergast, Ann MarieThe hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.Item Open Access Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection.(Elife, 2017-04-20) Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah ALatent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.Item Open Access Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation.(J Clin Invest, 2015-01) Gerriets, Valerie A; Kishton, Rigel J; Nichols, Amanda G; Macintyre, Andrew N; Inoue, Makoto; Ilkayeva, Olga; Winter, Peter S; Liu, Xiaojing; Priyadharshini, Bhavana; Slawinska, Marta E; Haeberli, Lea; Huck, Catherine; Turka, Laurence A; Wood, Kris C; Hale, Laura P; Smith, Paul A; Schneider, Martin A; MacIver, Nancie J; Locasale, Jason W; Newgard, Christopher B; Shinohara, Mari L; Rathmell, Jeffrey CActivation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.Item Open Access PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation.(Sci Transl Med, 2016-12-14) Anderson, Gray R; Wardell, Suzanne E; Cakir, Merve; Crawford, Lorin; Leeds, Jim C; Nussbaum, Daniel P; Shankar, Pallavi S; Soderquist, Ryan S; Stein, Elizabeth M; Tingley, Jennifer P; Winter, Peter S; Zieser-Misenheimer, Elizabeth K; Alley, Holly M; Yllanes, Alexander; Haney, Victoria; Blackwell, Kimberly L; McCall, Shannon J; McDonnell, Donald P; Wood, Kris CTherapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that combined inhibition of B cell lymphoma-extra large (BCL-XL) and the mammalian target of rapamycin (mTOR)/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple-negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses myeloid cell leukemia-1 (MCL-1) protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of the molecular subtype or PIK3CA mutational status. Furthermore, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to antiapoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard-of-care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations.