Browsing by Author "Wirthlin, Morgan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Comparative genomics reveals molecular features unique to the songbird lineage.(BMC Genomics, 2014-12-13) Wirthlin, Morgan; Lovell, Peter V; Jarvis, Erich D; Mello, Claudio VBACKGROUND: Songbirds (oscine Passeriformes) are among the most diverse and successful vertebrate groups, comprising almost half of all known bird species. Identifying the genomic innovations that might be associated with this success, as well as with characteristic songbird traits such as vocal learning and the brain circuits that underlie this behavior, has proven difficult, in part due to the small number of avian genomes available until recently. Here we performed a comparative analysis of 48 avian genomes to identify genomic features that are unique to songbirds, as well as an initial assessment of function by investigating their tissue distribution and predicted protein domain structure. RESULTS: Using BLAT alignments and gene synteny analysis, we curated a large set of Ensembl gene models that were annotated as novel or duplicated in the most commonly studied songbird, the Zebra finch (Taeniopygia guttata), and then extended this analysis to 47 additional avian and 4 non-avian genomes. We identified 10 novel genes uniquely present in songbird genomes. A refined map of chromosomal synteny disruptions in the Zebra finch genome revealed that the majority of these novel genes localized to regions of genomic instability associated with apparent chromosomal breakpoints. Analyses of in situ hybridization and RNA-seq data revealed that a subset of songbird-unique genes is expressed in the brain and/or other tissues, and that 2 of these (YTHDC2L1 and TMRA) are highly differentially expressed in vocal learning-associated nuclei relative to the rest of the brain. CONCLUSIONS: Our study reveals novel genes unique to songbirds, including some that may subserve their unique vocal control system, substantially improves the quality of Zebra finch genome annotations, and contributes to a better understanding of how genomic features may have evolved in conjunction with the emergence of the songbird lineage.Item Open Access Convergent transcriptional specializations in the brains of humans and song-learning birds.(Science, 2014-12-12) Pfenning, Andreas R; Hara, Erina; Whitney, Osceola; Rivas, Miriam V; Wang, Rui; Roulhac, Petra L; Howard, Jason T; Wirthlin, Morgan; Lovell, Peter V; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M Arthur; Thompson, J Will; Soderblom, Erik J; Iriki, Atsushi; Kato, Masaki; Gilbert, M Thomas P; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V; Hartemink, Alexander J; Jarvis, Erich DSong-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.Item Open Access Whole-genome analyses resolve early branches in the tree of life of modern birds.(Science, 2014-12-12) Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon YW; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Li, Jianwen; Zhang, Fang; Li, Hui; Zhou, Long; Narula, Nitish; Liu, Liang; Ganapathy, Ganesh; Boussau, Bastien; Bayzid, Md Shamsuzzoha; Zavidovych, Volodymyr; Subramanian, Sankar; Gabaldón, Toni; Capella-Gutiérrez, Salvador; Huerta-Cepas, Jaime; Rekepalli, Bhanu; Munch, Kasper; Schierup, Mikkel; Lindow, Bent; Warren, Wesley C; Ray, David; Green, Richard E; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Li, Shengbin; Li, Ning; Huang, Yinhua; Derryberry, Elizabeth P; Bertelsen, Mads Frost; Sheldon, Frederick H; Brumfield, Robb T; Mello, Claudio V; Lovell, Peter V; Wirthlin, Morgan; Schneider, Maria Paula Cruz; Prosdocimi, Francisco; Samaniego, José Alfredo; Vargas Velazquez, Amhed Missael; Alfaro-Núñez, Alonzo; Campos, Paula F; Petersen, Bent; Sicheritz-Ponten, Thomas; Pas, An; Bailey, Tom; Scofield, Paul; Bunce, Michael; Lambert, David M; Zhou, Qi; Perelman, Polina; Driskell, Amy C; Shapiro, Beth; Xiong, Zijun; Zeng, Yongli; Liu, Shiping; Li, Zhenyu; Liu, Binghang; Wu, Kui; Xiao, Jin; Yinqi, Xiong; Zheng, Qiuemei; Zhang, Yong; Yang, Huanming; Wang, Jian; Wang, Jian; Smeds, Linnea; Rheindt, Frank E; Braun, Michael; Fjeldsa, Jon; Orlando, Ludovic; Barker, F Keith; Jønsson, Knud Andreas; Johnson, Warren; Koepfli, Klaus-Peter; O'Brien, Stephen; Haussler, David; Ryder, Oliver A; Rahbek, Carsten; Willerslev, Eske; Graves, Gary R; Glenn, Travis C; McCormack, John; Burt, Dave; Ellegren, Hans; Alström, Per; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas P; Zhang, GuojieTo better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.