Browsing by Author "Woo, Myung"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Evaluation of ML-Based Clinical Decision Support Tool to Replace an Existing Tool in an Academic Health System: Lessons Learned.(Journal of personalized medicine, 2020-08-27) Woo, Myung; Alhanti, Brooke; Lusk, Sam; Dunston, Felicia; Blackwelder, Stephen; Lytle, Kay S; Goldstein, Benjamin A; Bedoya, ArmandoThere is increasing application of machine learning tools to problems in healthcare, with an ultimate goal to improve patient safety and health outcomes. When applied appropriately, machine learning tools can augment clinical care provided to patients. However, even if a model has impressive performance characteristics, prospectively evaluating and effectively implementing models into clinical care remains difficult. The primary objective of this paper is to recount our experiences and challenges in comparing a novel machine learning-based clinical decision support tool to legacy, non-machine learning tools addressing potential safety events in the hospitals and to summarize the obstacles which prevented evaluation of clinical efficacy of tools prior to widespread institutional use. We collected and compared safety events data, specifically patient falls and pressure injuries, between the standard of care approach and machine learning (ML)-based clinical decision support (CDS). Our assessment was limited to performance of the model rather than the workflow due to challenges in directly comparing both approaches. We did note a modest improvement in falls with ML-based CDS; however, it was not possible to determine that overall improvement was due to model characteristics.Item Open Access Machine learning functional impairment classification with electronic health record data.(Journal of the American Geriatrics Society, 2023-09) Pavon, Juliessa M; Previll, Laura; Woo, Myung; Henao, Ricardo; Solomon, Mary; Rogers, Ursula; Olson, Andrew; Fischer, Jonathan; Leo, Christopher; Fillenbaum, Gerda; Hoenig, Helen; Casarett, DavidBackground
Poor functional status is a key marker of morbidity, yet is not routinely captured in clinical encounters. We developed and evaluated the accuracy of a machine learning algorithm that leveraged electronic health record (EHR) data to provide a scalable process for identification of functional impairment.Methods
We identified a cohort of patients with an electronically captured screening measure of functional status (Older Americans Resources and Services ADL/IADL) between 2018 and 2020 (N = 6484). Patients were classified using unsupervised learning K means and t-distributed Stochastic Neighbor Embedding into normal function (NF), mild to moderate functional impairment (MFI), and severe functional impairment (SFI) states. Using 11 EHR clinical variable domains (832 variable input features), we trained an Extreme Gradient Boosting supervised machine learning algorithm to distinguish functional status states, and measured prediction accuracies. Data were randomly split into training (80%) and test (20%) sets. The SHapley Additive Explanations (SHAP) feature importance analysis was used to list the EHR features in rank order of their contribution to the outcome.Results
Median age was 75.3 years, 62% female, 60% White. Patients were classified as 53% NF (n = 3453), 30% MFI (n = 1947), and 17% SFI (n = 1084). Summary of model performance for identifying functional status state (NF, MFI, SFI) was AUROC (area under the receiving operating characteristic curve) 0.92, 0.89, and 0.87, respectively. Age, falls, hospitalization, home health use, labs (e.g., albumin), comorbidities (e.g., dementia, heart failure, chronic kidney disease, chronic pain), and social determinants of health (e.g., alcohol use) were highly ranked features in predicting functional status states.Conclusion
A machine learning algorithm run on EHR clinical data has potential utility for differentiating functional status in the clinical setting. Through further validation and refinement, such algorithms can complement traditional screening methods and result in a population-based strategy for identifying patients with poor functional status who need additional health resources.