Browsing by Author "Wood, Kris C"
Results Per Page
Sort Options
Item Open Access ABL kinases regulate the stabilization of HIF-1α and MYC through CPSF1.(Proceedings of the National Academy of Sciences of the United States of America, 2023-04) Mayro, Benjamin; Hoj, Jacob P; Cerda-Smith, Christian G; Hutchinson, Haley M; Caminear, Michael W; Thrash, Hannah L; Winter, Peter S; Wardell, Suzanne E; McDonnell, Donald P; Wu, Colleen; Wood, Kris C; Pendergast, Ann MarieThe hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.Item Open Access An acoustofluidic trap and transfer approach for organizing a high density single cell array.(Lab on a chip, 2018-06-22) Ohiri, Korine A; Kelly, Sean T; Motschman, Jeffrey D; Lin, Kevin H; Wood, Kris C; Yellen, Benjamin BWe demonstrate a hybrid microfluidic system that combines fluidic trapping and acoustic switching to organize an array of single cells at high density. The fluidic trapping step is achieved by balancing the hydrodynamic resistances of three parallel channel segments forming a microfluidic trifurcation, the purpose of which was to capture single cells in a high-density array. Next, the cells were transferred into adjacent larger compartments by generating an array of streaming micro-vortices to move the cells to the desired streamlines in a massively parallel format. This approach can compartmentalize single cells with efficiencies of ≈67% in compartments that have diameters on the order of ∼100 um, which is an appropriate size for single cell proliferation studies and other single cell biochemical measurements.Item Open Access Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection.(Elife, 2017-04-20) Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah ALatent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.Item Embargo Integrative PTEN Enhancer Discovery Reveals a New Model of Enhancer Organization(2024) Cerda-Smith, Christian GonzaloEnhancers possess both structural elements mediating promoter looping and functional elements mediating gene expression. Traditional models of enhancer-mediated gene regulation imply genomic overlap or immediate adjacency of these elements. We test this model by combining densely-tiled CRISPRa screening with nucleosome-resolution Region Capture Micro-C topology analysis. Using this integrated approach, we comprehensively define the cis-regulatory landscape for the tumor suppressor PTEN, identifying and validating 10 distinct enhancers and defining their 3D spatial organization. Unexpectedly, we identify several long-range functional enhancers whose promoter proximity is facilitated by chromatin loop anchors several kilobases away, and demonstrate that accounting for this spatial separation improves the computational prediction of validated enhancers. Thus, we propose a new model of enhancer organization incorporating spatial separation of essential functional and structural components.
Item Open Access Massively parallel quantification of phenotypic heterogeneity in single-cell drug responses.(Sci Adv, 2021-09-17) Yellen, Benjamin B; Zawistowski, Jon S; Czech, Eric A; Sanford, Caleb I; SoRelle, Elliott D; Luftig, Micah A; Forbes, Zachary G; Wood, Kris C; Hammerbacher, Jeff[Figure: see text].Item Embargo Mechanistic Dissection of a Collateral Sensitivity to Drug Resistance in EGFR-Mutant Non-Small Cell Lung Cancer(2024) Bassil, Christopher FCancer is the second leading cause of death worldwide. Although the era of targeted therapies has produced encouraging clinical responses across a wide range of genetically defined cancer subtypes—from BRAF-mutant melanomas to EGFR-mutant non-small cell lung cancers—these benefits are, unfortunately, usually short-lived. The fact is that patients typically develop resistance to first-line targeted therapies within a matter of just months. This problem is complicated by two interrelated considerations: (1) cancer cells can develop resistance to their cognate targeted therapies through wide ranges of distinct mechanisms; and, (2) many, if not all, of these mechanisms co-evolve within the same individual patient or tumor. This presents a difficult quandary: on the one hand, treatments which use one drug to target an individual resistance mechanism are insufficient and unlikely to prove curative; on the other hand, treatments which use multiple drugs to target many different mechanisms at the same time are demanding, and are unlikely to be feasible. Thus, new approaches to the problem of multifocal drug resistance are needed. One strategy is to identify, target, and exploit new vulnerabilities which emerge as a consequence of drug resistance itself. Although these “collateral” sensitivities have long been documented in the microbial literature, details of their therapeutic relevance in cancer had, until recently, been limited to isolated reports. A previous, unpublished study of ours found that collateral sensitivities are a stable, predictable, and widespread feature of drug resistance in cancer. Furthermore, drug-resistant, EGFR-mutant NSCLC cells in particular are especially prone to acquisition of targetable collateral sensitivities. The dissertation below builds off of our previous work by identifying the bis-chalcone MCB-613 as a collateral sensitivity to drug resistance in EGFR-mutant NSCLC. Extensive mechanistic dissection reveals that MCB-613 enacts this program through the inhibition of KEAP1, which selectively targets resistant cells through hyperinduction of the integrated stress response. Furthermore, this pattern of activity makes bis-chalcones unique among KEAP1 inhibitors, and relies upon their ability to act as a molecular glue which tethers together KEAP1 monomers by specific lysine residues within their BTB dimerization domains. As a result, this work demonstrates the value of collateral effects not just as a paradigm for approaching multifocal drug resistance in cancer, but also as a starting point for the elucidation of novel underlying biology.
Item Open Access Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation.(J Clin Invest, 2015-01) Gerriets, Valerie A; Kishton, Rigel J; Nichols, Amanda G; Macintyre, Andrew N; Inoue, Makoto; Ilkayeva, Olga; Winter, Peter S; Liu, Xiaojing; Priyadharshini, Bhavana; Slawinska, Marta E; Haeberli, Lea; Huck, Catherine; Turka, Laurence A; Wood, Kris C; Hale, Laura P; Smith, Paul A; Schneider, Martin A; MacIver, Nancie J; Locasale, Jason W; Newgard, Christopher B; Shinohara, Mari L; Rathmell, Jeffrey CActivation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.Item Open Access Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes.(Genes Cancer, 2016-07) Singleton, Katherine R; Wood, Kris CFunctional genomics approaches such as gain- and loss-of-function screening can efficiently reveal genes that control cancer cell growth, survival, signal transduction, and drug resistance, but distilling the results of large-scale screens into actionable therapeutic strategies is challenging given our incomplete understanding of the functions of many genes. Research over several decades, including the results of large-scale cancer sequencing projects, has made it clear that many oncogenic properties are controlled by a common set of core oncogenic signaling pathways. By directly screening this core set of pathways, rather than much larger numbers of individual genes, it may be possible to more directly and efficiently connect functional genomic screening results with therapeutic targets. Here, we describe the recent development of methods to directly screen oncogenic pathways in high-throughput. We summarize the results of studies that have used pathway-centric screening to map the pathways of resistance to targeted therapies in diverse cancer types, then conclude by expanding on potential future applications of this approach.Item Open Access PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation.(Sci Transl Med, 2016-12-14) Anderson, Gray R; Wardell, Suzanne E; Cakir, Merve; Crawford, Lorin; Leeds, Jim C; Nussbaum, Daniel P; Shankar, Pallavi S; Soderquist, Ryan S; Stein, Elizabeth M; Tingley, Jennifer P; Winter, Peter S; Zieser-Misenheimer, Elizabeth K; Alley, Holly M; Yllanes, Alexander; Haney, Victoria; Blackwell, Kimberly L; McCall, Shannon J; McDonnell, Donald P; Wood, Kris CTherapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that combined inhibition of B cell lymphoma-extra large (BCL-XL) and the mammalian target of rapamycin (mTOR)/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple-negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses myeloid cell leukemia-1 (MCL-1) protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of the molecular subtype or PIK3CA mutational status. Furthermore, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to antiapoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard-of-care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations.Item Open Access Synthetic lethality between HER2 and transaldolase in intrinsically resistant HER2-positive breast cancers.(Nature communications, 2018-10) Ding, Yi; Gong, Chang; Huang, De; Chen, Rui; Sui, Pinpin; Lin, Kevin H; Liang, Gehao; Yuan, Lifeng; Xiang, Handan; Chen, Junying; Yin, Tao; Alexander, Peter B; Wang, Qian-Fei; Song, Er-Wei; Li, Qi-Jing; Wood, Kris C; Wang, Xiao-FanIntrinsic resistance to anti-HER2 therapy in breast cancer remains an obstacle in the clinic, limiting its efficacy. However, the biological basis for intrinsic resistance is poorly understood. Here we performed a CRISPR/Cas9-mediated loss-of-function genetic profiling and identified TALDO1, which encodes the rate-limiting transaldolase (TA) enzyme in the non-oxidative pentose phosphate pathway, as essential for cellular survival following pharmacological HER2 blockade. Suppression of TA increases cell susceptibility to HER2 inhibition in two intrinsically resistant breast cancer cell lines with HER2 amplification. Mechanistically, TA depletion combined with HER2 inhibition significantly reduces cellular NADPH levels, resulting in excessive ROS production and deficient lipid and nucleotide synthesis. Importantly, higher TA expression correlates with poor response to HER2 inhibition in a breast cancer patient cohort. Together, these results pinpoint TA as a novel metabolic enzyme possessing synthetic lethality with HER2 inhibition that can potentially be exploited as a biomarker or target for combination therapy.