Browsing by Author "Woods, Chris W"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A host gene expression approach for identifying triggers of asthma exacerbations.(PloS one, 2019-01) Lydon, Emily C; Bullard, Charles; Aydin, Mert; Better, Olga M; Mazur, Anna; Nicholson, Bradly P; Ko, Emily R; McClain, Micah T; Ginsburg, Geoffrey S; Woods, Chris W; Burke, Thomas W; Henao, Ricardo; Tsalik, Ephraim LRATIONALE:Asthma exacerbations often occur due to infectious triggers, but determining whether infection is present and whether it is bacterial or viral remains clinically challenging. A diagnostic strategy that clarifies these uncertainties could enable personalized asthma treatment and mitigate antibiotic overuse. OBJECTIVES:To explore the performance of validated peripheral blood gene expression signatures in discriminating bacterial, viral, and noninfectious triggers in subjects with asthma exacerbations. METHODS:Subjects with suspected asthma exacerbations of various etiologies were retrospectively selected for peripheral blood gene expression analysis from a pool of subjects previously enrolled in emergency departments with acute respiratory illness. RT-PCR quantified 87 gene targets, selected from microarray-based studies, followed by logistic regression modeling to define bacterial, viral, or noninfectious class. The model-predicted class was compared to clinical adjudication and procalcitonin. RESULTS:Of 46 subjects enrolled, 7 were clinically adjudicated as bacterial, 18 as viral, and 21 as noninfectious. Model prediction was congruent with clinical adjudication in 15/18 viral and 13/21 noninfectious cases, but only 1/7 bacterial cases. None of the adjudicated bacterial cases had confirmatory microbiology; the precise etiology in this group was uncertain. Procalcitonin classified only one subject in the cohort as bacterial. 47.8% of subjects received antibiotics. CONCLUSIONS:Our model classified asthma exacerbations by the underlying bacterial, viral, and noninfectious host response. Compared to clinical adjudication, the majority of discordances occurred in the bacterial group, due to either imperfect adjudication or model misclassification. Bacterial infection was identified infrequently by all classification schemes, but nearly half of subjects were prescribed antibiotics. A gene expression-based approach may offer useful diagnostic information in this population and guide appropriate antibiotic use.Item Open Access SARS-CoV-2 Viremia is Associated with COVID-19 Severity and Predicts Clinical Outcomes.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2021-08-10) Jacobs, Jana L; Bain, William; Naqvi, Asma; Staines, Brittany; Castanha, Priscila MS; Yang, Haopu; Boltz, Valerie F; Barratt-Boyes, Simon; Marques, Ernesto TA; Mitchell, Stephanie L; Methé, Barbara; Olonisakin, Tolani F; Haidar, Ghady; Burke, Thomas W; Petzold, Elizabeth; Denny, Thomas; Woods, Chris W; McVerry, Bryan J; Lee, Janet S; Watkins, Simon C; St Croix, Claudette M; Morris, Alison; Kearney, Mary F; Ladinsky, Mark S; Bjorkman, Pamela J; Kitsios, Georgios D; Mellors, John WBackground
SARS-CoV-2 viral RNA (vRNA) is detected in the bloodstream of some patients with COVID-19 ("RNAemia") but it is not clear whether this RNAemia reflects viremia (i.e., virus particles) and how RNAemia/viremia is related to host immune responses and outcomes.Methods
SARS-CoV-2 vRNA was quantified by ultra-sensitive RT-PCR in plasma samples (0.5-1.0 ml) from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-ICU), and 23 ICU patients, and vRNA levels compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in pelleted plasma.Results
SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6% and 11.1% of ICU, non-ICU, and outpatients respectively. Virions were detected in plasma pellets by electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (p<0.0001); and for inpatient, plasma vRNA levels were strongly associated with higher WHO score at admission (p=0.01), maximum WHO score (p=0.002) and discharge disposition (p=0.004). A plasma vRNA level >6,000 copies/ml was strongly associated with mortality (HR: 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (p<0.01) but not with plasma neutralizing antibody titers (p=0.8).Conclusions
Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia quantified by ultrasensitive RT-PCR correlate strongly with disease severity, patient outcome and specific inflammatory biomarkers but not neutralizing antibody titers.