Browsing by Author "Wu, Chi-Fang"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Imaging Polarization in Budding Yeast.(Methods Mol Biol, 2016) McClure, Allison W; Wu, Chi-Fang; Johnson, Sam A; Lew, Daniel JWe describe methods for live-cell imaging of yeast cells that we have exploited to image yeast polarity establishment. As a rare event occurring on a fast time-scale, imaging polarization involves a trade-off between spatiotemporal resolution and long-term imaging without excessive phototoxicity. By synchronizing cells in a way that increases resistance to photodamage, we discovered unexpected aspects of polarization including transient intermediates with more than one polarity cluster, oscillatory clustering of polarity factors, and mobile "wandering" polarity sites.Item Open Access Inhibitory GEF phosphorylation provides negative feedback in the yeast polarity circuit(Current Biology, 2014) Kuo, Chun-Chen; Savage, Natasha S; Chen, Hsin; Wu, Chi-Fang; Zyla, Trevin R; Lew, Daniel JCell polarity is critical for the form and function of many cell types. During polarity establishment, cells define a cortical "front" that behaves differently from the rest of the cortex. The front accumulates high levels of the active form of a polarity-determining Rho-family GTPase (Cdc42, Rac, or Rop) that then orients cytoskeletal elements through various effectors to generate the polarized morphology appropriate to the particular cell type [1, 2]. GTPase accumulation is thought to involve positive feedback, such that active GTPase promotes further delivery and/or activation of more GTPase in its vicinity [3]. Recent studies suggest that once a front forms, the concentration of polarity factors at the front can increase and decrease periodically, first clustering the factors at the cortex and then dispersing them back to the cytoplasm [4-7]. Such oscillatory behavior implies the presence of negative feedback in the polarity circuit [8], but the mechanism of negative feedback was not known. Here we show that, in the budding yeast Saccharomyces cerevisiae, the catalytic activity of the Cdc42-directed GEF is inhibited by Cdc42-stimulated effector kinases, thus providing negative feedback. We further show that replacing the GEF with a phosphosite mutant GEF abolishes oscillations and leads to the accumulation of excess GTP-Cdc42 and other polarity factors at the front. These findings reveal a mechanism for negative feedback and suggest that the function of negative feedback via GEF inhibition is to buffer the level of Cdc42 at the polarity site. © 2014 Elsevier Ltd.Item Open Access Parallel Actin-Independent Recycling Pathways Polarize Cdc42 in Budding Yeast.(Curr Biol, 2016-08-22) Woods, Benjamin; Lai, Helen; Wu, Chi-Fang; Zyla, Trevin R; Savage, Natasha S; Lew, Daniel JThe highly conserved Rho-family GTPase Cdc42 is an essential regulator of polarity in many different cell types. During polarity establishment, Cdc42 becomes concentrated at a cortical site, where it interacts with downstream effectors to orient the cytoskeleton along the front-back axis. To concentrate Cdc42, loss of Cdc42 by diffusion must be balanced by recycling to the front. In Saccharomyces cerevisiae, the guanine nucleotide dissociation inhibitor (GDI) Rdi1 recycles Cdc42 through the cytoplasm. Loss of Rdi1 slowed but did not eliminate Cdc42 accumulation at the front, suggesting the existence of other recycling pathways. One proposed pathway involves actin-directed trafficking of vesicles carrying Cdc42 to the front. However, we found no role for F-actin in Cdc42 concentration, even in rdi1Δ cells. Instead, Cdc42 was still able to exchange between the membrane and cytoplasm in rdi1Δ cells, albeit at a reduced rate. Membrane-cytoplasm exchange of GDP-Cdc42 was faster than that of GTP-Cdc42, and computational modeling indicated that such exchange would suffice to promote polarization. We also uncovered a novel role for the Cdc42-directed GTPase-activating protein (GAP) Bem2 in Cdc42 polarization. Bem2 was known to act in series with Rdi1 to promote recycling of Cdc42, but we found that rdi1Δ bem2Δ mutants were synthetically lethal, suggesting that they also act in parallel. We suggest that GAP activity cooperates with the GDI to counteract the dissipative effect of a previously unappreciated pathway whereby GTP-Cdc42 escapes from the polarity site through the cytoplasm.