Browsing by Author "Wu, Qing"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access BSA-rGO nanocomposite hydrogel formed by UV polymerization and in situ reduction applied as biosensor electrode.(Journal of materials chemistry. B, 2013-10) Tang, Zhou; Gao, Lu; Wu, Yihua; Su, Teng; Wu, Qing; Liu, Xinhua; Li, Wenjun; Wang, QigangThis communication demonstrates a convenient strategy to prepare a tough BSA-rGO hydrogel electrode via photopolymerization, which is demonstrated to be a highly effective H2O2 biosensor electrode with low detection concentration and high sensing sensitivity after combining with hemin chloride.Item Open Access Dual enzymatic formation of hybrid hydrogels with supramolecular-polymeric networks.(Chemical communications (Cambridge, England), 2014-11) Mao, Yanjie; Su, Teng; Wu, Qing; Liao, Chuanan; Wang, QigangThis communication describes a mild construction of hybrid hydrogels with supramolecular-polymeric networks via a dual enzymatic reaction.Item Open Access Dual-Enzyme-Loaded Multifunctional Hybrid Nanogel System for Pathological Responsive Ultrasound Imaging and T2-Weighted Magnetic Resonance Imaging.(ACS nano, 2015-06) Wang, Xia; Niu, Dechao; Li, Pei; Wu, Qing; Bo, Xiaowan; Liu, Boji; Bao, Song; Su, Teng; Xu, Huixiong; Wang, QigangA dual-enzyme-loaded multifunctional hybrid nanogel probe (SPIO@GCS/acryl/biotin-CAT/SOD-gel, or SGC) has been developed for dual-modality pathological responsive ultrasound (US) imaging and enhanced T2-weighted magnetic resonance (MR) imaging. This probe is composed of functionalized superparamagnetic iron oxide particles, a dual enzyme species (catalase and superoxide dismutase), and a polysaccharide cationic polymer glycol chitosan gel. The dual-modality US/MR imaging capabilities of the hybrid nanogel for responsive US imaging and enhanced T2-weighted MR imaging have been evaluated both in vitro and in vivo. These results show that the hybrid nanogel SGC can exhibit efficient dual-enzyme biocatalysis with pathological species for responsive US imaging. SGC also demonstrates increased accumulation in acidic environments for enhanced T2-weighted MR imaging. Further research on these nanogel systems may lead to the development of more efficient US/MR contrast agents.Item Open Access HRP-mediated polymerization forms tough nanocomposite hydrogels with high biocatalytic performance.(Chemical communications (Cambridge, England), 2013-09) Su, Teng; Zhang, Da; Tang, Zhou; Wu, Qing; Wang, QigangThis communication describes the mild and quick construction of tough nanocomposite hydrogels via a horseradish peroxidase-mediated radical polymerization for effectively immobilizing enzymes to attain high catalytic performance in various solvents.Item Open Access Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents.(Biomaterials, 2015-01) Wang, Xia; Niu, Dechao; Wu, Qing; Bao, Song; Su, Teng; Liu, Xiaohang; Zhang, Shengjian; Wang, QigangThis work described a proof of concept study of hybrid nanogel-based magnetic resonance contrast agents, SPIO@GCS/acryl/biotin@Mn-gel, abb. as SGM, for highly efficient, pH-responsive T1 and T2 dual-mode magnetic resonance imaging (MRI). SGM have been synthesized by assembling superparamagnetic iron oxide particles into polysaccharide nanoclusters, followed by in-situ reduction of the manganese species on the clusters and a final mild polymerization. The dual-mode SGM showed an interesting pH-responsiveness in in vitro MRI, with both T1 and T2 relaxivities turned "ON" in the acidic environment, along with an increase in the r1 and r2 relaxivity values by 1.7-fold (from 8.9 to 15.3 mM(-1) S(-1)) and 4.9-fold (from 45.7 to 226 mM(-1) S(-1)), due to desirable silencing and de-silencing effects. This interesting acidic-responsiveness was further verified in vivo with both significantly brightened signal of tumor tissue in T1-weighted MR images and a darkened signal in T2-weighted MR images 50 min post-injection of SGM. This smart hybrid nanogel may serve as a promising candidate for further studies of dual-mode (T1 and T2) contrast agents in MRI, due to its high stability, interesting pH-response mechanism and indicative imaging of tumors.Item Open Access Nanocomposite gels via in situ photoinitiation and disassembly of TiOTiO₂-clay composites with polymers applied as UV protective films.(ACS applied materials & interfaces, 2014-02) Liao, Chuanan; Wu, Qing; Su, Teng; Zhang, Da; Wu, Qingsheng; Wang, QigangWe report a facile solution polymerized approach to prepare nanocomposite hydrogels. The electrostatic assembly of positive TiO2 nanoparticles with negative clay nanosheets obtained TiO2-clay composite particles, which was disassembled by the solution polymerization of N,N-dimethylacrylamide and homogeneously interacted with poly(N,N-dimethylacrylamide) chain to form nanocomposite hydrogels. The final nanocomposite hydrogels are mechanical tough and transparent, which has the maximum 598.21 KPa compressive strength. The immobilized TiO2 not only acted as the photo-initiator for radical polymerization but also endowed the nanocomposite gel films good UV protective performance. This strategy can be very useful for preparing nanocomposite hydrogels with different functions.Item Open Access Thermal responsive microgels as recyclable carriers to immobilize active proteins with enhanced nonaqueous biocatalytic performance.(Chemical communications (Cambridge, England), 2013-12) Wu, Qing; Su, Teng; Mao, Yanjie; Wang, QigangWe describe the preparation of a thermoresponsive microgel, which can non-covalently immobilize active proteins with enhanced biocatalytic performance in organic solvents and easy reusability due to the porous microstructure and temperature responsive property.