Browsing by Author "Xiao, Dequan"
- Results Per Page
- Sort Options
Item Open Access Modulating unimolecular charge transfer by exciting bridge vibrations.(J Am Chem Soc, 2009-12-23) Lin, Zhiwei; Lawrence, Candace M; Xiao, Dequan; Kireev, Victor V; Skourtis, Spiros S; Sessler, Jonathan L; Beratan, David N; Rubtsov, Igor VUltrafast UV-vibrational spectroscopy was used to investigate how vibrational excitation of the bridge changes photoinduced electron transfer between donor (dimethylaniline) and acceptor (anthracene) moieties bridged by a guanosine-cytidine base pair (GC). The charge-separated (CS) state yield is found to be lowered by high-frequency bridge mode excitation. The effect is linked to a dynamic modulation of the donor-acceptor coupling interaction by weakening of H-bonding and/or by disruption of the bridging base-pair planarity.Item Open Access Molecular Design for Nonlinear Optical Materials and Molecular Interferometers Using Quantum Chemical Computations(2009) Xiao, DequanQuantum chemical computations provide convenient and effective ways for molecular design using computers. In this dissertation, the molecular designs of optimal nonlinear optical (NLO) materials were investigated through three aspects. First, an inverse molecular design method was developed using a linear combination of atomic potential approach based on a Hückel-like tight-binding framework, and the optimizations of NLO properties were shown to be both efficient and effective. Second, for molecules with large first-hyperpolarizabilities, a new donor-carbon-nanotube paradigm was proposed and analyzed. Third, frequency-dependent first-hyperpolarizabilities were predicted and interpreted based on experimental linear absorption spectra and Thomas-Kuhn sum rules. Finally, molecular interferometers were designed to control charge-transfer using vibrational excitation. In particular, an ab initio vibronic pathway analysis was developed to describe inelastic electron tunneling, and the mechanism of vibronic pathway interferences was explored.