Browsing by Author "Xu, Lingfan"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry.(Prostate cancer and prostatic diseases, 2021-10-13) Patierno, Brendon M; Foo, Wen-Chi; Allen, Tyler; Somarelli, Jason A; Ware, Kathryn E; Gupta, Santosh; Wise, Sandra; Wise, John P; Qin, Xiaodi; Zhang, Dadong; Xu, Lingfan; Li, Yanjing; Chen, Xufeng; Inman, Brant A; McCall, Shannon J; Huang, Jiaoti; Kittles, Rick A; Owzar, Kouros; Gregory, Simon; Armstrong, Andrew J; George, Daniel J; Patierno, Steven R; Hsu, David S; Freedman, Jennifer ABackground
Prostate cancer is a clinically and molecularly heterogeneous disease, with highest incidence and mortality among men of African ancestry. To date, prostate cancer patient-derived xenograft (PCPDX) models to study this disease have been difficult to establish because of limited specimen availability and poor uptake rates in immunodeficient mice. Ancestrally diverse PCPDXs are even more rare, and only six PCPDXs from self-identified African American patients from one institution were recently made available.Methods
In the present study, we established a PCPDX from prostate cancer tissue from a patient of estimated 90% West African ancestry with metastatic castration resistant disease, and characterized this model's pathology, karyotype, hotspot mutations, copy number, gene fusions, gene expression, growth rate in normal and castrated mice, therapeutic response, and experimental metastasis.Results
This PCPDX has a mutation in TP53 and loss of PTEN and RB1. We have documented a 100% take rate in mice after thawing the PCPDX tumor from frozen stock. The PCPDX is castrate- and docetaxel-resistant and cisplatin-sensitive, and has gene expression patterns associated with such drug responses. After tail vein injection, the PCPDX tumor cells can colonize the lungs of mice.Conclusion
This PCPDX, along with others that are established and characterized, will be useful pre-clinically for studying the heterogeneity of prostate cancer biology and testing new therapeutics in models expected to be reflective of the clinical setting.Item Open Access Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer.(Nucleic acids research, 2021-05) Xu, Chenxi; Tsai, Yi-Hsuan; Galbo, Phillip M; Gong, Weida; Storey, Aaron J; Xu, Yuemei; Byrum, Stephanie D; Xu, Lingfan; Whang, Young E; Parker, Joel S; Mackintosh, Samuel G; Edmondson, Ricky D; Tackett, Alan J; Huang, Jiaoti; Zheng, Deyou; Earp, H Shelton; Wang, Gang Greg; Cai, LingCastration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.Item Open Access Heat shock factor 1 directly regulates transsulfuration pathway to promote prostate cancer proliferation and survival(Communications Biology) Hauck, J Spencer; Moon, David; Jiang, Xue; Wang, Mu-En; Zhao, Yue; Xu, Lingfan; Quang, Holly; Butler, William; Chen, Ming; Macias, Everardo; Gao, Xia; He, Yiping; Huang, JiaotiAbstractThere are limited therapeutic options for patients with advanced prostate cancer (PCa). We previously found that heat shock factor 1 (HSF1) expression is increased in PCa and is an actionable target. In this manuscript, we identify that HSF1 regulates the conversion of homocysteine to cystathionine in the transsulfuration pathway by altering levels of cystathionine-β-synthase (CBS). We find that HSF1 directly binds the CBS gene and upregulates CBS mRNA levels. Targeting CBS decreases PCa growth and induces tumor cell death while benign prostate cells are largely unaffected. Combined inhibition of HSF1 and CBS results in more pronounced inhibition of PCa cell proliferation and reduction of transsulfuration pathway metabolites. Combination of HSF1 and CBS knockout decreases tumor size for a small cell PCa xenograft mouse model. Our study thus provides new insights into the molecular mechanism of HSF1 function and an effective therapeutic strategy against advanced PCa.Item Open Access Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer.(Asian journal of urology, 2019-01) Xu, Lingfan; Chen, Junyi; Liu, Weipeng; Liang, Chaozhao; Hu, Hailiang; Huang, JiaotiSince androgen receptor (AR) signaling is critically required for the development of prostate cancer (PCa), targeting AR axis has been the standard treatment of choice for advanced and metastatic PCa. Unfortunately, although the tumor initially responds to the therapy, treatment resistance eventually develops and the disease will progress. It is therefore imperative to identify the mechanisms of therapeutic resistance and novel molecular targets that are independent of AR signaling. Recent advances in pathology, molecular biology, genetics and genomics research have revealed novel AR-independent pathways that contribute to PCa carcinogenesis and progression. They include neuroendocrine differentiation, cell metabolism, DNA damage repair pathways and immune-mediated mechanisms. The development of novel agents targeting the non-AR mechanisms holds great promise to treat PCa that does not respond to AR-targeted therapies.Item Open Access Therapeutic potential of ReACp53 targeting mutant p53 protein in CRPC.(Prostate cancer and prostatic diseases, 2020-03) Zhang, Yaqun; Xu, Lingfan; Chang, Yan; Li, YanJing; Butler, William; Jin, Er; Wang, Aifen; Tao, Yulei; Chen, Xufeng; Liang, Chaozhao; Huang, JiaotiBACKGROUNDS:p53 is a tumor suppressor that prevents cancer onset and progression, and mutations in the p53 gene cause loss of the tumor suppressor function of the protein. The mutant p53 protein in tumor cells can form aggregates which contribute to the dominant-negative effect over the wild-type p53 protein, causing loss of p53 tumor suppression or gain of novel oncogenic functions. Mutations in p53 have been implicated in the pathogenesis of primary prostate cancer (PCa), and are often detected in recurrent and metastatic disease. Thus, targeting mutant p53 may constitute an alternative therapeutic strategy for advanced PCa for which there are no other viable options. METHODS:In this study, we used immunoprecipitation, immunofluorescence, clonogenic survival, and cell proliferation assays, flow cytometric analysis and in vivo xenograft to investigate the biological effects of ReACp53, a cell-permeable peptide inhibitor of p53 aggregation, on mutant p53-carrying PCa cells. RESULTS:Our results show that ReACp53 targets amyloid aggregates of mutant p53 protein and restores the p53 nuclear function as transcriptional factor, induces mitochondrial cell death and reduces DNA synthesis of mutant p53-carrying PCa cells; ReACp53 also inhibits xenograft tumor growth in vivo. CONCLUSIONS:The data presented here suggest a therapeutic potential of targeting mutant p53 protein in advanced PCa setting, which has a clinical impact for aggressive PCa with transforming how such tumors are managed.