Browsing by Author "Xu, Xiangshang"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Inositol serves as a natural inhibitor of mitochondrial fission by directly targeting AMPK.(Molecular cell, 2021-09) Hsu, Che-Chia; Zhang, Xian; Wang, Guihua; Zhang, Weina; Cai, Zhen; Pan, Bo-Syong; Gu, Haiwei; Xu, Chuan; Jin, Guoxiang; Xu, Xiangshang; Manne, Rajesh Kumar; Jin, Yan; Yan, Wei; Shao, Jingwei; Chen, Tingjin; Lin, Emily; Ketkar, Amit; Eoff, Robert; Xu, Zhi-Gang; Chen, Zhong-Zhu; Li, Hong-Yu; Lin, Hui-KuanMitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.