Browsing by Author "Yan, Hai"
Results Per Page
Sort Options
Item Open Access A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer.(2011) Curtis, Valerie ForbesIn many cancer types, infiltration of bone marrow-derived myeloid cells in the tumor microenvironment is often associated with enhanced angiogenesis and tumor progression, resulting in poor prognosis. The polypeptide chemokine PK2 (Bv8) regulates myeloid cell mobilization from the bone marrow, leading to activation of angiogenesis as well as accumulation of macrophages and neutrophils in the tumor site. Neutralizing antibodies against PK2 display potent anti-tumor efficacy, illustrating the potential of PK2-antagonists as therapeutic agents for the treatment of cancer. However, antibody-based therapies can be too large to treat certain diseases and too expensive to manufacture while small molecule therapeutics are not prohibitive in these ways. In this study, we demonstrate the anti-tumor activity of a small molecule PK2 antagonist, PKRA7, in the contexts of glioblastoma and pancreatic cancer xenograft tumor models. In the highly vascularized glioblastoma, PKRA7 decreased blood vessel density while increasing necrotic areas in the tumor mass. Consistent with the anti-angiogenic activity of PKRA7 in vivo, this compound effectively reduced PK2-induced microvascular endothelial cell branching in vitro. For the poorly vascularized pancreatic cancer, the primary anti-tumor effect of PKRA7 is mediated by the blockage of myeloid cell migration and infiltration. At the molecular level, PKRA7 inhibits PK2-induced expression of several pro-migratory chemokines and chemokine receptors in macrophages. Combining PKRA7 treatment with standard chemotherapeutic agents resulted in enhanced effects in xenograft models for both glioblastoma and pancreatic tumors. Taken together, our results indicate that the anti-tumor activity of PKRA7 can be mediated by distinct mechanisms that are relevant to the pathological features of the specific type of cancer. This small molecule PK2 antagonist holds the promise to be further developed as an effective agent for combinational cancer therapy.Item Open Access Biochemical Characterization and Genetic Modeling of Glioma-Associated Mutations in Isocitrate Dehydrogenases.(2014) Lopez, Giselle YvetteGliomas are the most common tumors of the central nervous system. Our lab recently identified mutations in IDH1 and IDH2 as occurring frequently in progressive gliomas. We applied a series of biochemical and genetic approaches to explore the roles of the mutations in tumors and generate models for study.
IDH1/2 mutations have the potential to impact a number of metabolic pathways. IDH1/2 convert isocitrate to α-ketoglutarate while simultaneously converting NADP+ to NADPH. To assess changes in metabolism, we completed metabolic profiling and complementary studies in cell lines with and without mutant IDH1 or mutant IDH2. We identified a decrease in hypoxia signaling and a decrease in global 5-hydroxymethylcytosine in cell lines with mutant IDH1/2 .
Having observed mutations in IDH1/2 in a large fraction of progressive gliomas, we asked if the mutations were either 1) advantageous for growth in brain parenchyma, or 2) advantageous in a particular cell-of-origin. Sequencing of a series of metastases to the brain from non-central nervous system tumors identified no mutations in IDH1/2, lending less credence to the first hypothesis. To elucidate whether mutations in IDH1/2 can initiate glioma progression and explore the potential cell-of-origin for progressive gliomas, we generated mice in which we induced expression of mutant IDH2 in different populations of cells in the brain, either alone or in combination with TP53 deletion, another frequently altered gene in progressive gliomas. Mice with broad expression of mutant IDH2 developed hydrocephalus and encephalomalacia early in life, but did not develop tumors. Therefore, we restricted expression, and two brain tumors were identified in mice with both IDH2 mutation and TP53 deletion. While this suggests that both mutations might be required for the development of tumors, this is too small a number to draw significant conclusions. Further research with an expanded cohort of mice, utilization of additional drivers of expression, and further characterization of identified tumors will help in elucidating the role of mutant IDH2 and the cell-of-origin for progressive gliomas.
Item Open Access Chromatin accessibility mapping identifies mediators of basal transcription and retinoid-induced repression of OTX2 in medulloblastoma.(PLoS One, 2014) Wortham, Matthew; Guo, Changcun; Zhang, Monica; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R; Furey, Terrence S; Crawford, Gregory E; Yan, Hai; He, YipingDespite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulation of the medulloblastoma oncogene Orthodenticle Homeobox 2 (OTX2). Through these studies we have revealed that OTX2 is differentially regulated in medulloblastoma at the level of chromatin accessibility, which is in part mediated by DNA methylation. In cell lines exhibiting chromatin accessibility of OTX2 regulatory regions, we found that autoregulation maintains OTX2 expression. Comparison of medulloblastoma regulatory elements with those of the developing brain reveals that these tumors engage a developmental regulatory program to drive OTX2 transcription. Finally, we have identified a transcriptional regulatory element mediating retinoid-induced OTX2 repression in these tumors. This work characterizes for the first time the mechanisms of OTX2 overexpression in medulloblastoma. Furthermore, this study establishes proof of principle for applying ENCODE datasets towards the characterization of upstream trans-acting factors mediating expression of individual genes.Item Open Access Disruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas.(Cancer research, 2013-01) Jin, Genglin; Reitman, Zachary J; Duncan, Christopher G; Spasojevic, Ivan; Gooden, David M; Rasheed, B Ahmed; Yang, Rui; Lopez, Giselle Y; He, Yiping; McLendon, Roger E; Bigner, Darell D; Yan, HaiPoint mutations at Arg132 of the cytoplasmic NADP(+)-dependent isocitrate dehydrogenase 1 (IDH1) occur frequently in gliomas and result in a gain of function to produce the "oncometabolite" D-2-hydroxyglutarate (D-2HG). The mutated IDH1 allele is usually associated with a wild-type IDH1 allele (heterozygous) in cancer. Here, we identify 2 gliomas that underwent loss of the wild-type IDH1 allele but retained the mutant IDH1 allele following tumor progression from World Health Organization (WHO) grade III anaplastic astrocytomas to WHO grade IV glioblastomas. Intratumoral D-2HG was 14-fold lower in the glioblastomas lacking wild-type IDH1 than in glioblastomas with heterozygous IDH1 mutations. To characterize the contribution of wild-type IDH1 to cancer cell D-2HG production, we established an IDH1-mutated astrocytoma (IMA) cell line from a WHO grade III anaplastic astrocytoma. Disruption of the wild-type IDH1 allele in IMA cells by gene targeting resulted in an 87-fold decrease in cellular D-2HG levels, showing that both wild-type and mutant IDH1 alleles are required for D-2HG production in glioma cells. Expression of wild-type IDH1 was also critical for mutant IDH1-associated D-2HG production in the colorectal cancer cell line HCT116. These insights may aid in the development of therapeutic strategies to target IDH1-mutated cancers.Item Open Access Driving Brain Tumorigenesis: Generation and Biological Characterization of a Mutant IDH1 Mouse Model(2014) Pirozzi, Christopher JamesDespite decades worth of research, glioblastoma remains one of the most lethal cancers. The identification of IDH1 as a major cancer gene in glioblastoma provides an exceptional opportunity for improving our understanding, diagnostics, and treatment of this disease. In addition to mutations in IDH1, recent studies from our laboratory have characterized the genetic landscape of gliomas and have shown the cooperation between IDH1 mutations and other oncogenic alterations such at TP53 mutations. Normally, IDH1 functions in the oxidative decarboxylation of isocitrate to α–ketoglutarate, however the mutant form confers neomorphic enzymatic activity by producing 2–hydroxyglutarate, an oncometabolite responsible for aberrant methylation in IDH1–mutated tumors, among other mutant IDH1–mediated phenotypes. To determine the role of mutant IDH1 in vivo, we generated a conditional knock–in mouse model. This genetically faithful system is both biologically and clinically relevant and will promote the understanding of mutant IDH1–mediated tumorigenesis while offering a route for therapeutic targeting.
We observed that broad expression of mutant IDH1 throughout the brain leads to hydrocephalus in 80% of animals. In assessing the earliest effects of mutant IDH1 on the brain, we determined mutant IDH1 confers a decrease in the proliferative cells of the subventricular zone of the lateral ventricle, the area which houses the neural stem cells in embryonic and adult animals. Additionally, a perturbation to the normal neural stem cell niche was observed in these animals. Combined, this data suggests that mutant IDH1 may be affecting the signaling pathways involved in differentiation in this population of cells. In vivo and in vitro studies will further elucidate mutant IDH1's effects on the differentiation patterns of neural stem cells expressing mutant IDH1.
To express mutant IDH1 in a more restricted manner and harness spatiotemporal control, we crossed mutant animals to a Nestin–CreERT2 strain of mouse that permits expression of floxed alleles upon treatment with tamoxifen. Animals were sacrificed at the onset of symptoms or at 1–year of age. We observed the development of both low– and high–grade gliomas in approximately 15–percent of E18.5 tamoxifen–treated animals. All tumors were found in a TP53–deleted background with mutant IDH1 being detected in only those tumors with the mutant allele. Lastly, to decrease the latency and increase the penetrance of tumor formation, an orthotopic intracranial injection model was generated to allow for visualization of tumor formation and development, as well as investigation of therapeutic modalities. The models generated and the knowledge gained from these studies will offer an understanding of the biological effects of the most common mutations found in the astrocytic subset of gliomas, bringing us strides closer to determining mechanisms and therapeutic targets for IDH1–mutated cancers.
Item Open Access EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis.(The Journal of clinical investigation, 2014-09) Feng, Haizhong; Lopez, Giselle Y; Kim, Chung Kwon; Alvarez, Angel; Duncan, Christopher G; Nishikawa, Ryo; Nagane, Motoo; Su, An-Jey A; Auron, Philip E; Hedberg, Matthew L; Wang, Lin; Raizer, Jeffery J; Kessler, John A; Parsa, Andrew T; Gao, Wei-Qiang; Kim, Sung-Hak; Minata, Mutsuko; Nakano, Ichiro; Grandis, Jennifer R; McLendon, Roger E; Bigner, Darell D; Lin, Hui-Kuan; Furnari, Frank B; Cavenee, Webster K; Hu, Bo; Yan, Hai; Cheng, Shi-YuanAberrant activation of EGFR in human cancers promotes tumorigenesis through stimulation of AKT signaling. Here, we determined that the discoidina neuropilin-like membrane protein DCBLD2 is upregulated in clinical specimens of glioblastomas and head and neck cancers (HNCs) and is required for EGFR-stimulated tumorigenesis. In multiple cancer cell lines, EGFR activated phosphorylation of tyrosine 750 (Y750) of DCBLD2, which is located within a recently identified binding motif for TNF receptor-associated factor 6 (TRAF6). Consequently, phosphorylation of DCBLD2 Y750 recruited TRAF6, leading to increased TRAF6 E3 ubiquitin ligase activity and subsequent activation of AKT, thereby enhancing EGFR-driven tumorigenesis. Moreover, evaluation of patient samples of gliomas and HNCs revealed an association among EGFR activation, DCBLD2 phosphorylation, and poor prognoses. Together, our findings uncover a pathway in which DCBLD2 functions as a signal relay for oncogenic EGFR signaling to promote tumorigenesis and suggest DCBLD2 and TRAF6 as potential therapeutic targets for human cancers that are associated with EGFR activation.Item Open Access Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas.(Oncotarget, 2012-07) Jiao, Yuchen; Killela, Patrick J; Reitman, Zachary J; Rasheed, Ahmed B; Heaphy, Christopher M; de Wilde, Roeland F; Rodriguez, Fausto J; Rosemberg, Sergio; Oba-Shinjo, Sueli Mieko; Nagahashi Marie, Suely Kazue; Bettegowda, Chetan; Agrawal, Nishant; Lipp, Eric; Pirozzi, Christopher; Lopez, Giselle; He, Yiping; Friedman, Henry; Friedman, Allan H; Riggins, Gregory J; Holdhoff, Matthias; Burger, Peter; McLendon, Roger; Bigner, Darell D; Vogelstein, Bert; Meeker, Alan K; Kinzler, Kenneth W; Papadopoulos, Nickolas; Diaz, Luis A; Yan, HaiMutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas ( more than 10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.Item Open Access Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma(2019) Hansen, Landon JohnPrimary glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, with a median patient survival of only 15 months from the time of diagnosis. GBM is particularly challenging to treat due to its aggressive and invasive nature, and has proven resistant to therapeutic advances, with no significant improvement in outcomes over the past several decades. Understanding of the molecular characteristics of GBM, however, has improved dramatically, with genetic, epigenetic, and transcriptomic classifications now able to divide GBM into subtypes that provide prognostic information and guide the organization of clinical trials. One of the most frequent genetic alterations that has been identified in GBM is homozygous deletion of the methylthioadenosine phosphorylase (MTAP) gene, which occurs in 50% of all GBM cases. Despite its common occurrence, it is unclear what contribution MTAP loss makes in the pathogenesis of GBM or whether this genetic alteration can be used as a therapeutic target.
MTAP is a metabolic enzyme in the salvage pathway of adenine and methionine and its absence results in the accumulation of its metabolic substrate, methylthioadenosine (MTA), within and around tumor cells. MTA is known to inhibit activity of methyltransferases, raising the possibility that MTA accumulation is interfering with regulatory processes within the cell.
We utilized patient-derived GBM cell lines in vitro and GBM xenografts in vivo, to characterize consequence of MTAP deletion in GBM through analysis of DNA methylation, gene expression, and response to therapeutic agents. We show that MTAP loss promotes the formation of glioma stem-like cells through epigenomic dysregulation. We show these epigenetic changes influence gene expression patterns and alter the sensitivity to epigenome-modifying drugs. We also demonstrate that MTAP-null GBM cells are more tumorigenic in experimental models and that patients with MTAP deletion have poor disease outcomes. Finally, we show that targeting metabolic liabilities of MTAP-null cells through inhibition of de novo purine synthesis specifically depletes the therapy-resistant, stem-like cell subpopulation of GBM.
As the final component of this work, we explore the impact of MTA accumulation in the tumor microenvironment. We found that MTA alters the function of immune cells through adenosine receptor signaling, suggesting that modulation of adenosine receptor signaling in GBM may improve the native immune response and the efficacy of immunotherapeutics in the treatment of this disease.
This work thus establishes MTAP deletion as a pathogenic genetic alteration in the process of gliomagenesis by illustrating it’s contribution to the formation of the cancer cell epigenomic landscape, stemness characteristics, growth, and response to therapeutic agents.
Item Open Access Genetic Dissection of the Biological and Molecular Role of IDH1 Mutations in Glioma(2012) Reitman, Zachary JGliomas are tumors of the central nervous system for which improvements in treatment are critically needed. Mutations in IDH1 and IDH2, which encode the cytosolic and mitochondrial NADP+-dependent isocitrate dehydrogenases, respectively, are frequent in gliomas. Here, we summarize recent literature concerning gliomas, the normal cellular functions of IDH1/2, the epidemiology of IDH1/2 mutations, and the understanding of the function of IDH1/2 mutations in cancer. We then show in vitro using liquid chromatography-mass spectrometry that a function of many IDH1/2 mutations is to produce 2-hydroxyglutarate. Next, we use a mass spectrometry based platform to characterize metabolic changes in a glioma cell line expressing IDH1/2 mutants and show that the IDH mutants are associated with lowered N-acetylated amino acids both in this cell line model and in primary tumor tissue. Finally, we develop and characterize a Drosophila melanogaster (fruit fly) model of IDH1/2-mutated cancer by expressing the mutated Drosophila homolog of IDH1 in fly tissues using the UAS-Gal4 binary expression system. These results delineate downstream molecular players that likely play a role in IDH1/2-mutated cancer and provide a model organism for interrogation of genetic networks that interact with IDH1/2 mutation. These findings refine our understanding of glioma pathogenesis and may inform the design of new glioma therapies.
Item Open Access Genetic Studies Identify Critical Biomarkers and Refine the Classification of Malignant Gliomas(2014) Killela, Patrick JGliomagenesis is driven by a complex network of genetic alterations and while the glioma genome has been a focus of investigation for many years; critical gaps in our knowledge of this disease remain. The identification of novel molecular biomarkers remains a focus of the greater cancer community as a method to improve the consistency and accuracy of pathological diagnosis. In addition, novel molecular biomarkers are drastically needed for the identification of targets that may ultimately result in novel therapeutics aimed at improving glioma treatment. Through the identification of new biomarkers, laboratories will focus future studies on the molecular mechanisms that underlie glioma development. Here, we report a series of genomic analyses identifying novel molecular biomarkers in multiple histopathological subtypes of glioma and refine the classification of malignant gliomas. We have completed a large scale analysis of the WHO grade II-III astrocytoma exome and report frequent mutations in the chromatin modifier, alpha thalassemia mental retardation x-linked (ATRX), isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), and mutations in tumor protein 53 (TP53) as the most frequent genetic mutations in low grade astrocytomas. Furthermore, by analyzing the status of recurrently mutated genes in 363 brain tumors, we establish that highly recurrent gene mutational signatures are an effective tool in stratifying homogeneous patient populations into distinct groups with varying outcomes, thereby capable of predicting prognosis. Next, we have established mutations in the promoter of telomerase reverse transcriptase (TERT) as a frequent genetic event in gliomas and in tissues with low rates of self renewal. We identify TERT promoter mutations as the most frequently mutated gene in primary glioblastoma. Additionally, we show that TERT promoter mutations in combination with IDH1 and IDH2 mutations are able to delineate distinct clinical tumor cohorts and are capable of predicting median overall survival more effectively than standard histopathological diagnosis alone. Taken together, these data advance our understanding of the genetic alterations that underlie the transformation of glial cells into neoplasms and we provide novel genetic biomarkers and multi – gene mutational signatures that can be utilized to refine the classification of malignant gliomas and provide opportunity for improved diagnosis.
Item Open Access Genomic and Molecular Characterization of Brainstem Glioma(2019) Chen, Lee HungGliomas of the brainstem and closely surrounding structures are a devastating form of brain cancers with some of the highest mortality rates among all cancers. The delicate structures surrounding these tumors make surgical resection rare due to the risk of perioperative mortality or paralysis. A lack of available tissue has created a dearth of genomic information regarding gliomas effecting specific structures in the brainstem impacting options for intervention.
This work comprises two major projects of brainstem gliomas. The first part is to utilize next generation sequencing technique to discover novel oncogenes, and to use epigenetic features to characterize brainstem gliomas. The second part is to utilize integrated analysis of whole genome sequencing, methylation microarray, RNA sequencing data to establish the classification of brainstem gliomas.
In the first part we completed exomic and Sanger sequencing on 33 brainstem gliomas and 17 thalamic gliomas to reveal major findings regarding their respective oncogenomes. We reported the presence of IDH1 mutations occurring in brain- stem gliomas exclusive of H3.3 mutations. We further revealed somatic mutations to PPM1D, the gene encoding for the Protein phosphatase 1D in 37.5% of brainstem gliomas harboring H3.3 mutations. We determined that PPM1D mutations are mu- tually exclusive with TP53 mutations in brainstem gliomas. This was the largest body of genomic work completed on specific loci within the brainstem providing new insights into their respective oncogenomes and presents PPM1D as a new oncotarget.
In the second part we then performed a comprehensive study incorporating com- bined epigenetic and genomic analyses with clinical features, aiming to understand the genetics and molecular biology of this disease. From DNA methylation data, we identified four distinct clusters termed H3-Pons, H3-Medulla, IDH, and PA-like, each associated with unique genomic and clinical profiles. The majority of tumors within H3-Pons and H3-Medulla harbored H3F3A mutations, but showed distinct methy- lation patterns that correlated with anatomical localization of these tumors within the pons or medulla, respectively. Clinical data also showed significantly different overall survival between these clusters, and pathway analysis demonstrated different mechanisms in these samples. In summary, we performed a comprehensive molecular profiling study on a large brainstem glioma cohort, including Diffuse Intrinsic Pon- tine Gliomas. Our findings indicate that the integration of DNA methylation data may facilitate a better understanding of brainstem glioma classification and guide future studies for the development of novel treatments for this disease.
Item Open Access Genomic approaches to guide the molecular classification of glioma(2019) Diplas, BillMalignant gliomas account for more than 80% of all primary brain malignancies and 14,000 deaths in the U.S. annually. Despite aggressive treatment, malignant gliomas are largely fatal, as their invasive nature renders them prone to rapid recurrence. Gliomas are classified according to histopathologic criteria which are critical to treatment planning, as certain subtypes show increased sensitivity to particular therapeutic agents. However, gliomas often exhibit extensive tumor heterogeneity and ambiguity among histologic features, leading to subjectivity in diagnosis and low concordance rates among neuropathologists.
Recently, a number of large-scale genomic studies identified mutations in the TERT promoter and IDH1/2 in ~80% of all gliomas. Based on the occurrence of these mutations, gliomas can be classified into objective molecular subtypes that stratify patients into clear prognostic subgroups more effectively than by histology alone. However, current sequencing-based methods to identify these alterations are limited by low sensitivity (40% tumor cellularity), a major constraint on their clinical utility in the context of diffusely infiltrative gliomas. Importantly, this work also revealed that 20% of glioblastomas lack these alterations, delineating a subset of tumors known as the TERT promoter wildtype-IDH wildtype (TERTpWT-IDHWT) glioblastomas.
Preliminary studies indicate that TERT promoter and IDH mutations can effectively stratify the majority (80%) of patients into clinically-relevant genetic subtypes, however current mutation detection methods lack sensitivity (Sanger sequencing) or are overly time-consuming (next-generation sequencing). Here, we report the development of a qPCR-based approach which can provide more sensitive and rapid detection of these mutations and practical utility in glioma diagnosis by detecting low-abundance mutations (e.g., poorly sampled tumors). Finally, we report the genetic landscape of TERTpWT-IDHWT glioblastomas using whole exome and whole genome sequencing, revealing that these tumors harbor a unique set of genetic alterations and exhibit distinct genetic mechanisms of telomere maintenance from other known subgroups of GBM, including recurrent SMARCAL1 mutations and rearrangements upstream of TERT. Using cell-based assays and markers of alternative lengthening of telomeres (ALT), we provide evidence showing that SMARCAL1 acts as a tumor and ALT suppressor and that loss of function cancer-associated mutations are involved in ALT mechanism of telomere maintenance.
These studies have identified the key underlying genetic alterations that characterize TERTpWT-IDHWT glioblastomas, and can serve as biomarkers for more accurate diagnosis and treatment of this glioma subgroup. By developing a sensitive diagnostic for the critical TERTp and IDH alterations, we facilitate accurate diagnosis and prognostication of glioma patients.
Item Open Access IDH1 R132H Mutations Actively Contribute to the Epigenetic State of Glioma Cells(2019) Moure, Casey JosephPoint mutations in the active site of isocitrate dehydrogenases 1 and 2 (\textit{IDH}) occur in the majority of WHO grade II and III gliomas, resulting in a unique milieu of signaling and metabolism. IDH1/2 active site mutations confer a gain-of-function activity to the enzyme, which results in the production of the oncometabolite D-2-hydroxyglutarate (D-2HG). D-2HG accumulation in turn promotes tumor formation through competitive inhibition of $\alpha$-ketoglutarate dependent ($\alpha$-KG) enzymes. Inhibition of $\alpha$-KG-dependent enzymes, such as histone demethylases and DNA demethylases, is sufficient to induce tumor-promoting epigenetic changes, but can also impose situational constraints on cell proliferation. To develop better therapies for mutant IDH1-bearing gliomas, it is essential to determine whether the epigenetic changes induced by the mutant IDH proteins actively require the mutation after tumor formation. Furthermore, it is imperative to decode the molecular mechanisms that promote tumor cells’ fitness under IDH mutation-dependent constraints in representative models. Here, we describe and characterize CRISPR-Cas9 based isogenic cell line models using patient-derived IDH1$^{R132H/WT}$ glioma cell lines. We uncover that these models show persistent DNA hypermethylation in CpG loci of the glioma CpG island methylator phenotype even after D-2HG production has been abolished. We also report a genome wide pattern of DNA demethylation in CpG sites outside of CpG islands, which reflect the acquisition of a G-CIMP-low like state after loss of D-2HG production. Then, using these cell line tools, we performed an unbiased sub-genomic CRISPR-library screening to identify genes whose functions supported the growth of glioma cells bearing endogenous IDH1 mutations. This work thus provides new patient derived models for exploring novel therapeutic opportunities for IDH1 mutant tumors, and uncovers the extent to which IDH mutation linked hypermethylation profiles in glioma depend upon D-2HG production from the IDH mutation.
Item Open Access IDH1(R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain.(Biochemical and biophysical research communications, 2010-07-13) Lopez, Giselle Y; Reitman, Zachary J; Solomon, David; Waldman, Todd; Bigner, Darell D; McLendon, Roger E; Rosenberg, Steven A; Samuels, Yardena; Yan, HaiIsocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are enzymes which convert isocitrate to alpha-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+to NADPH). IDH1/2 were recently identified as mutated in a large percentage of progressive gliomas. These mutations occur at IDH1(R132) or the homologous IDH2(R172). Melanomas share some genetic features with IDH1/2-mutated gliomas, such as frequent TP53 mutation. We sought to test whether melanoma is associated with IDH1/2 mutations. Seventy-eight human melanoma samples were analyzed for IDH1(R132) and IDH2(R172) mutation status. A somatic, heterozygous IDH1 c.C394T (p.R132C) mutation was identified in one human melanoma metastasis to the lung. Having identified this mutation in one metastasis, we sought to test the hypothesis that certain selective pressures in the brain environment may specifically favor the cell growth or survival of tumor cells with mutations in IDH1/2, regardless of primary tumor site. To address this, we analyzed IDH1(R132) and IDH2(R172) mutation status 53 metastatic brain tumors, including nine melanoma metastases. Results revealed no mutations in any samples. This lack of mutations would suggest that mutations in IDH1(R132) or IDH2(R172) may be necessary for the formation of tumors in a cell-lineage dependent manner, with a particularly strong selective pressure for mutations in progressive gliomas; this also suggests the lack of a particular selective pressure for growth in brain tissue in general. Studies on the cell-lineages of tumors with IDH1/2 mutations may help clarify the role of these mutations in the development of brain tumors.Item Open Access Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target.(Current opinion in neurology, 2011-12) Guo, Changcun; Pirozzi, Christopher J; Lopez, Giselle Y; Yan, HaiIsocitrate dehydrogenases, IDH1 and IDH2, decarboxylate isocitrate to α-ketoglutarate (α-KG) and reduce NADP to NADPH. Point mutations of IDH1 and IDH2 have been discovered in gliomas. IDH mutations cause loss of native enzymatic activities and confer novel activity of converting α-KG to 2-hydroxyglutarate (2-HG). The mechanisms of IDH mutations in gliomagenesis, and their value as diagnostic, prognostic marker and therapeutic target have been extensively studied. This review is to summarize the findings of these studies.Crystal structural studies revealed conformation changes in mutant IDHs, which may explain the gain of function by mutant IDHs. The product of mutant IDHs, 2-HG, is an inhibitor of α-KG-dependent dioxygenases, which may cause genome-wide epigenetic changes in human gliomas. IDH mutations are a favorable prognostic factor for human glioma and can be used as biomarker for differential diagnosis and subclassification rather than predictor of response to treatment. Preliminary data suggested that inhibiting production of the substrate of mutant IDH enzymes caused slow-down of glioma cell growth.As valuable diagnostic and prognostic markers of human gliomas, there is still a lack of knowledge on biological functions of mutant IDHs, making targeting IDHs in glioma both difficult and unsecured.Item Open Access Molecular Characterization of Genetic and Epigenetic Alterations in Gliomas(2012) Duncan, Christopher GentryGlioma development and progression are driven by complex genetic alterations, including point mutations and gain or loss of genomic copy number, as well as epigenetic aberrations, including DNA methylation and histone modifications. However, the molecular mechanisms underlying the causes and effects of these alterations are poorly understood, and improved treatments are greatly needed. Here, we report a comprehensive evaluation of the recurrent genomic alterations in gliomas and further dissect the molecular effects of the most frequently-occurring genomic events. First, we performed a multifaceted genomic analysis to identify genes targeted by copy number alteration in glioblastoma, the most aggressive malignant glioma. We identify EGFR negative regulator, ERRFI1, as a glioblastoma-targeted gene within the minimal region of deletion in 1p36.23. Furthermore, we demonstrate that Aurora-A kinase substrate, TACC3, displays gain of copy number on 4p16.3 and is overexpressed in a grade-specific pattern. Next, using a gene targeting approach, we knocked-in a single copy of the most frequently observed point mutation in gliomas, IDH1R132H/WT, into a human cancer cell line. We show that heterozygous expression of the IDH1R132H allele is sufficient to induce the genome-wide alterations in DNA methylation characteristic of these tumors. Together, these data provide insight on genetic and epigenetic alterations which drive human gliomas.
Item Open Access Mutant IDH1 is required for IDH1 mutated tumor cell growth.(Oncotarget, 2012-08) Jin, Genglin; Pirozzi, Christopher J; Chen, Lee H; Lopez, Giselle Y; Duncan, Christopher G; Feng, Jie; Spasojevic, Ivan; Bigner, Darell D; He, Yiping; Yan, HaiFrequent somatic hotspot mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in gliomas, acute myeloid leukemias, chondrosarcomas, and other cancers, providing a likely avenue for targeted cancer therapy. However, whether mutant IDH1 protein is required for maintaining IDH1 mutated tumor cell growth remains unknown. Here, using a genetically engineered inducible system, we report that selective suppression of endogenous mutant IDH1 expression in HT1080, a fibrosarcoma cell line with a native IDH1(R132C) heterozygous mutation, significantly inhibits cell proliferation and decreases clonogenic potential. Our findings offer insights into changes that may contribute to the inhibition of cell proliferation and offer a strong preclinical rationale for utilizing mutant IDH1 as a valid therapeutic target.Item Open Access Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas.(Oncotarget, 2014-03-30) Killela, Patrick J; Pirozzi, Christopher J; Healy, Patrick; Reitman, Zachary J; Lipp, Eric; Rasheed, B Ahmed; Yang, Rui; Diplas, Bill H; Wang, Zhaohui; Greer, Paula K; Zhu, Huishan; Wang, Catherine Y; Carpenter, Austin B; Friedman, Henry; Friedman, Allan H; Keir, Stephen T; He, Jie; He, Yiping; McLendon, Roger E; Herndon, James E; Yan, Hai; Bigner, Darell DFrequent mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) and the promoter of telomerase reverse transcriptase (TERT) represent two significant discoveries in glioma genomics. Understanding the degree to which these two mutations co-occur or occur exclusively of one another in glioma subtypes presents a unique opportunity to guide glioma classification and prognosis. We analyzed the relationship between overall survival (OS) and the presence of IDH1/2 and TERT promoter mutations in a panel of 473 adult gliomas. We hypothesized and show that genetic signatures capable of distinguishing among several types of gliomas could be established providing clinically relevant information that can serve as an adjunct to histopathological diagnosis. We found that mutations in the TERT promoter occurred in 74.2% of glioblastomas (GBM), but occurred in a minority of Grade II-III astrocytomas (18.2%). In contrast, IDH1/2 mutations were observed in 78.4% of Grade II-III astrocytomas, but were uncommon in primary GBM. In oligodendrogliomas, TERT promoter and IDH1/2 mutations co-occurred in 79% of cases. Patients whose Grade III-IV gliomas exhibit TERT promoter mutations alone predominately have primary GBMs associated with poor median OS (11.5 months). Patients whose Grade III-IV gliomas exhibit IDH1/2 mutations alone predominately have astrocytic morphologies and exhibit a median OS of 57 months while patients whose tumors exhibit both TERT promoter and IDH1/2 mutations predominately exhibit oligodendroglial morphologies and exhibit median OS of 125 months. Analyzing gliomas based on their genetic signatures allows for the stratification of these patients into distinct cohorts, with unique prognosis and survival.Item Open Access Radiolabeled inhibitors as probes for imaging mutant IDH1 expression in gliomas: Synthesis and preliminary evaluation of labeled butyl-phenyl sulfonamide analogs.(Eur J Med Chem, 2016-08-25) Chitneni, Satish K; Reitman, Zachary J; Gooden, David M; Yan, Hai; Zalutsky, Michael RINTRODUCTION: Malignant gliomas frequently harbor mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Studies suggest that IDH mutation contributes to tumor pathogenesis through mechanisms that are mediated by the neomorphic metabolite of the mutant IDH1 enzyme, 2-hydroxyglutarate (2-HG). The aim of this work was to synthesize and evaluate radiolabeled compounds that bind to the mutant IDH1 enzyme with the goal of enabling noninvasive imaging of mutant IDH1 expression in gliomas by positron emission tomography (PET). METHODS: A small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported butyl-phenyl sulfonamide inhibitors of mutant IDH1. Enzyme inhibition assays were conducted using purified mutant IDH1 enzyme, IDH1-R132H, to determine the IC50 and the maximal inhibitory efficiency of the synthesized compounds. Selected compounds, 1 and 4, were labeled with radioiodine ((125)I) and/or (18)F using bromo- and phenol precursors, respectively. In vivo behavior of the labeled inhibitors was studied by conducting tissue distribution studies with [(125)I]1 in normal mice. Cell uptake studies were conducted using an isogenic astrocytoma cell line that carried a native IDH1-R132H mutation to evaluate the potential uptake of the labeled inhibitors in IDH1-mutated tumor cells. RESULTS: Enzyme inhibition assays showed good inhibitory potency for compounds that have iodine or a fluoroethoxy substituent at the ortho position of the phenyl ring in compounds 1 and 4 with IC50 values of 1.7 μM and 2.3 μM, respectively. Compounds 1 and 4 inhibited mutant IDH1 activity and decreased the production of 2-HG in an IDH1-mutated astrocytoma cell line. Radiolabeling of 1 and 4 was achieved with an average radiochemical yield of 56.6 ± 20.1% for [(125)I]1 (n = 4) and 67.5 ± 6.6% for [(18)F]4 (n = 3). [(125)I]1 exhibited favorable biodistribution characteristics in normal mice, with rapid clearance from the blood and elimination via the hepatobiliary system by 4 h after injection. The uptake of [(125)I]1 in tumor cells positive for IDH1-R132H was significantly higher compared to isogenic WT-IDH1 controls, with a maximal uptake ratio of 1.67 at 3 h post injection. Co-incubation of the labeled inhibitors with the corresponding nonradioactive analogs, and decreasing the normal concentrations of FBS (10%) in the incubation media substantially increased the uptake of the labeled inhibitors in both the IDH1-mutant and WT-IDH1 tumor cell lines, suggesting significant non-specific binding of the synthesized labeled butyl-phenyl sulfonamide inhibitors. CONCLUSIONS: These data demonstrate the feasibility of developing radiolabeled probes for the mutant IDH1 enzyme based on enzyme inhibitors. Further optimization of the labeled inhibitors by modifying the chemical structure to decrease the lipophilicity and to increase potency may yield compounds with improved characteristics as probes for imaging mutant IDH1 expression in tumors.Item Open Access The Role of Otx2 in Bypassing Restrictions of Hindbrain Progenitor Cell Proliferation and the Mechanisms of its Dysregulation in Medulloblastoma(2012) Wortham, MatthewMedulloblastoma is the most common malignant brain tumor in children. The understanding of the genetic alterations in this tumor is emergent, and many such genetic driver events have yet to be functionally-characterized. Our studies have sought to understand the causes and consequences of OTX2 dysregulation in established medulloblastomas and in its putative cellular origins. Using a tumor genetic approach, we have uncovered frequent OTX2 copy number gains driving expression of this oncogene in a subset of medulloblastomas. However, OTX2 is frequently expressed in medulloblastomas independent of genomic copy number gain, and we thus sought to understand the transcriptional regulation of this gene in these tumors. We have found that chromatin accessibility, promoter DNA methylation, and activity of a distal downstream enhancer is distinct between OTX2-expressing and -nonexpressing medulloblastomas. Notably, autoregulation serves to maintain OTX2 expression in some medulloblastomas, whereas DNA methylation actively suppresses OTX2 in tumors not expressing this gene. Finally, we describe the effect of expressing Otx2 (the mouse homolog of OTX2) aberrantly in the developing mouse hindbrain, revealing that Otx2 disrupts spatiotemporal restrictions of neuronal progenitor cell proliferation. The effect of Otx2 in vivo is transient, with ectopically-proliferating cells give way to differentiated neurons. We found that OTX2 expression was not able to give rise to high penetrance medulloblastoma when combined with P53 deletion or double heterozygosity for P53 and PTEN. Thus, although Otx2 alters migration and proliferation dynamics of hindbrain neuronal progenitor cells, further studies are needed to identify the genetic alterations that cooperate with this oncogene to give rise to medulloblastoma.