Browsing by Author "Yang, Ping"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Complement-Mediated Regulation of Apolipoprotein E in Cultured Human RPE Cells.(Investigative ophthalmology & visual science, 2017-06) Yang, Ping; Skiba, Nikolai P; Tewkesbury, Grace M; Treboschi, Victoria M; Baciu, Peter; Jaffe, Glenn JComplement activation is implicated in the pathogenesis of age-related macular degeneration (AMD). Apolipoprotein E (ApoE) and complement activation products such as membrane attack complex (MAC) are present in eyes of individuals with AMD. Herein, we investigated the effect of complement activation on induction of ApoE accumulation in human retinal pigment epithelial (RPE) cells.Cultured human RPE cells were primed with a complement-fixing antibody followed by treatment with C1q-depleted (C1q-Dep) human serum to elicit alternative pathway complement activation. Controls included anti-C5 antibody-treated serum and heat-inactivated C1q-Dep. Total protein was determined on RPE cell extracts, conditioned media, and extracellular matrix (ECM) by Western blot. ApoE and MAC colocalization was assessed on cultured RPE cells and human eyes by immunofluorescent stain. ApoE mRNA expression was evaluated by quantitative PCR (qPCR).Complement challenge upregulated cell-associated ApoE, but not apolipoprotein A1. ApoE accumulation was blocked by anti-C5 antibody and enhanced by repetitive complement challenge. ApoE mRNA levels were not affected by complement challenge. ApoE was frequently colocalized with MAC in complement-treated cells and drusen from human eyes. ApoE was released into complement-treated conditioned media after a single complement challenge and accumulated on ECM after repetitive complement challenge.Complement challenge induces time-dependent ApoE accumulation in RPE cells. An understanding of the mechanisms by which complement affects RPE ApoE accumulation may help to better explain drusen composition, and provide insights into potential therapeutic targets.Item Open Access Resveratrol Protects Against Hydroquinone-Induced Oxidative Threat in Retinal Pigment Epithelial Cells.(Investigative ophthalmology & visual science, 2020-04) Neal, Samantha E; Buehne, Kristen L; Besley, Nicholas A; Yang, Ping; Silinski, Peter; Hong, Jiyong; Ryde, Ian T; Meyer, Joel N; Jaffe, Glenn JPurpose
Oxidative stress in retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD). Resveratrol exerts a range of protective biologic effects, but its mechanism(s) are not well understood. The aim of this study was to investigate how resveratrol could affect biologic pathways in oxidatively stressed RPE cells.Methods
Cultured human RPE cells were treated with hydroquinone (HQ) in the presence or absence of resveratrol. Cell viability was determined with WST-1 reagent and trypan blue exclusion. Mitochondrial function was measured with the XFe24 Extracellular Flux Analyzer. Expression of heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit was evaluated by qPCR. Endoplasmic reticulum stress protein expression was measured by Western blot. Potential reactions between HQ and resveratrol were investigated using high-performance liquid chromatography mass spectrometry with resveratrol and additional oxidants for comparison.Results
RPE cells treated with the combination of resveratrol and HQ had significantly increased cell viability and improved mitochondrial function when compared with HQ-treated cells alone. Resveratrol in combination with HQ significantly upregulated HO-1 mRNA expression above that of HQ-treated cells alone. Resveratrol in combination with HQ upregulated C/EBP homologous protein and spliced X-box binding protein 1. Additionally, new compounds were formed from resveratrol and HQ coincubation.Conclusions
Resveratrol can ameliorate HQ-induced toxicity in RPE cells through improved mitochondrial bioenergetics, upregulated antioxidant genes, stimulated unfolded protein response, and direct oxidant interaction. This study provides insight into pathways through which resveratrol can protect RPE cells from oxidative damage, a factor thought to contribute to AMD pathogenesis.