Browsing by Author "Yang, Wen-Hsuan"
Results Per Page
Sort Options
Item Open Access DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway(Oncogene) Lin, Chao-Chieh; Yang, Wen-Hsuan; Lin, Yi-Tzu; Tang, Xiaohu; Chen, Po-Han; Ding, Chien-Kuang Cornelia; Qu, Dan Chen; Alvarez, James V; Chi, Jen-TsanItem Open Access Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism.(Cell death and differentiation, 2019-07-18) Chen, Po-Han; Wu, Jianli; Ding, Chien-Kuang Cornelia; Lin, Chao-Chieh; Pan, Samuel; Bossa, Nathan; Xu, Yitong; Yang, Wen-Hsuan; Mathey-Prevot, Bernard; Chi, Jen-TsanFerroptosis is a specialized iron-dependent cell death that is associated with lethal lipid peroxidation. Modulation of ferroptosis may have therapeutic potential since it has been implicated in various human diseases as well as potential antitumor activities. However, much remains unknown about the underlying mechanisms and genetic determinants of ferroptosis. Given the critical role of kinases in most biological processes and the availability of various kinase inhibitors, we sought to systemically identify kinases essential for ferroptosis. We performed a forward genetic-based kinome screen against ferroptosis in MDA-MB-231 cells triggered by cystine deprivation. This screen identified 34 essential kinases involved in TNFα and NF-kB signaling. Unexpectedly, the DNA damage response serine/threonine kinase ATM (mutated in Ataxia-Telangiectasia) was found to be essential for ferroptosis. The pharmacological or genetic inhibition of ATM consistently rescued multiple cancer cells from ferroptosis triggered by cystine deprivation or erastin. Instead of the canonical DNA damage pathways, ATM inhibition rescued ferroptosis by increasing the expression of iron regulators involved in iron storage (ferritin heavy and light chain, FTH1 and FTL) and export (ferroportin, FPN1). The coordinated changes of these iron regulators during ATM inhibition resulted in a lowering of labile iron and prevented the iron-dependent ferroptosis. Furthermore, we found that ATM inhibition enhanced the nuclear translocation of metal-regulatory transcription factor 1 (MTF1), responsible for regulating expression of Ferritin/FPN1 and ferroptosis protection. Genetic depletion of MTF-1 abolished the regulation of iron-regulatory elements by ATM and resensitized the cells to ferroptosis. Together, we have identified an unexpected ATM-MTF1-Ferritin/FPN1 regulatory axis as novel determinants of ferroptosis through regulating labile iron levels.Item Open Access MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis(Nature Metabolism, 2020-01-01) Ding, Chien-Kuang Cornelia; Rose, Joshua; Sun, Tianai; Wu, Jianli; Chen, Po-Han; Lin, Chao-Chieh; Yang, Wen-Hsuan; Chen, Kai-Yuan; Lee, Hana; Xu, Emily; Tian, Sarah; Akinwuntan, Jadesola; Zhao, Jinshi; Guan, Ziqiang; Zhou, Pei; Chi, Jen-Tsan© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Critical to the bacterial stringent response is the rapid relocation of resources from proliferation toward stress survival through the respective accumulation and degradation of (p)ppGpp by RelA and SpoT homologues. While mammalian genomes encode MESH1, a homologue of the bacterial (p)ppGpp hydrolase SpoT, neither (p)ppGpp nor its synthetase has been identified in mammalian cells. Here, we show that human MESH1 is an efficient cytosolic NADPH phosphatase that facilitates ferroptosis. Visualization of the MESH1–NADPH crystal structure revealed a bona fide affinity for the NADPH substrate. Ferroptosis-inducing erastin or cystine deprivation elevates MESH1, whose overexpression depletes NADPH and sensitizes cells to ferroptosis, whereas MESH1 depletion promotes ferroptosis survival by sustaining the levels of NADPH and GSH and by reducing lipid peroxidation. The ferroptotic protection by MESH1 depletion is ablated by suppression of the cytosolic NAD(H) kinase, NADK, but not its mitochondrial counterpart NADK2. Collectively, these data shed light on the importance of cytosolic NADPH levels and their regulation under ferroptosis-inducing conditions in mammalian cells.Item Open Access Molecular Mechanisms of TAZ-regulating Ferroptosis in Cancer Cells and tRNA Fragment in Erythrocytes(2019) Yang, Wen-HsuanHere, I sought to determine the molecular mechanisms of the cellular response to stresses in two contexts. In the first part of my thesis, I focus on how ferroptosis, a lipid oxidative stress-induced cell death, can be regulated by cell density via an evolutionarily conserved pathway effector. In the second part, I focus on the transcriptional response of red blood cells (RBCs) during the refrigerated storage.
Ferroptosis is a novel form of programmed cell death characterized by the accumulation of lipid peroxidation. It can be induced by the oxidative stress caused by starvation of cystine, inhibition of glutathione peroxidase 4, or activation of NADPH oxidase(s). The canonical ferroptosis inducer, erastin, is a small molecule which triggers oxidative stress by inhibiting the cystine-glutamate transporter (xCT) and thus reduces intracellular cysteine level and glutathione biosynthesis. Recent studies indicate ferroptosis may have therapeutic potential toward cancer. However, much remains unknown about the determinants of ferroptosis susceptibility. We observed that vulnerability to the ferroptosis of cancer cells is highly influenced by cell confluency. Since cell density can be sensed by the evolutionarily conserved Hippo pathway effectors, YAP/TAZ, we hypothesize if these Hippo pathway effectors are involved in erastin-induced ferroptosis response. My data show that TAZ, instead of YAP, is abundantly expressed in both renal and ovarian cancer cells and undergoes density-dependent nuclear/cytosolic translocation. TAZ removal confers ferroptosis resistance, while overexpression of constitutively active form of TAZ, TAZS89A, sensitizes cells to ferroptosis. Similarly, I found that a lower TAZ level in the recurrent ovarian cancer is responsible for reduced ferroptosis susceptibility of these cells. I further investigated the mechanisms by which TAZ regulates ferroptosis. and found that TAZ regulates ferroptosis through EMP1-NOX4 axis in renal cancers and ANGPTL4-NOX2 axis in ovarian cancers. The relevance of the Hippo pathway effector with ferroptosis suggests that ferroptosis-inducing agents may be used to target the TAZ-activated tumors.
The second part of my dissertation investigated the molecular mechanisms of transcriptome changes inside RBCs during ex vivo storages. RBCs are the major component of blood transfusions, one of the most common procedures in the hospital. In addition, some athletes utilize blood transfusion of stored RBCs to increase athletic performance, a practice banned by the world anti-doping agency. Currently, RBCs can be stored for up to 42 days at ~4°C before transfusion. However, transfusion with RBCs after long storage duration may correlate with a poorer prognosis compared with fresh RBCs and results in increased morbidity and mortality. To recognize the undesirable effects of prolonged RBC storage on transfusion recipients, it is critical to understand storage-associated RBC changes. To this end, our lab has previously identified a variety of RNA species in mature RBCs and profiled the miRNA changes that occur in RBCs at different time intervals during in vitro storage. This profiling demonstrates that the abundance of most RBC miRNAs did not change significantly during the 42 days of refrigerated storage, indicating extremely long decay half-lives. Unexpectedly, miR-720, a cleavage product of tRNAThr, increased dramatically in the first two weeks and persisted during storage. Furthermore, I present evidence for a role of angiogenin in tRNA cleavage to generate miR-720 during RBC storage. The dramatic increase in miR-720 may be used to monitor transfused RBCs in clinical patients, athletes performing blood doping, and other settings. Additionally, the increase in miR-720 levels in the stored RBC may potentially contribute to the cellular and clinical phenotypes associated with storage lesions.
Taken together, these studies on how human cells respond to stresses have the potentials as guidance for cancer patients toward ferroptosis-inducing chemotherapeutics or provide a novel way of detecting blood doping or understanding the RBC storage lesions.
Item Open Access Quantitative phase imaging of erythrocytes under microfluidic constriction in a high refractive index medium reveals water content changes.(Microsystems & nanoengineering, 2019-01) Park, Han Sang; Eldridge, Will J; Yang, Wen-Hsuan; Crose, Michael; Ceballos, Silvia; Roback, John D; Chi, Jen-Tsan Ashley; Wax, AdamChanges in the deformability of red blood cells can reveal a range of pathologies. For example, cells which have been stored for transfusion are known to exhibit progressively impaired deformability. Thus, this aspect of red blood cells has been characterized previously using a range of techniques. In this paper, we show a novel approach for examining the biophysical response of the cells with quantitative phase imaging. Specifically, optical volume changes are observed as the cells transit restrictive channels of a microfluidic chip in a high refractive index medium. The optical volume changes indicate an increase of cell's internal density, ostensibly due to water displacement. Here, we characterize these changes over time for red blood cells from two subjects. By storage day 29, a significant decrease in the magnitude of optical volume change in response to mechanical stress was witnessed. The exchange of water with the environment due to mechanical stress is seen to modulate with storage time, suggesting a potential means for studying cell storage.Item Open Access The Hippo Pathway Effector YAP Promotes Ferroptosis via the E3 Ligase SKP2(Molecular Cancer Research) Yang, Wen-Hsuan; Lin, Chao-Chieh; Wu, Jianli; Chao, Pei-Ya; Chen, Kuan; Chen, Po-Han; Chi, Jen-TsanItem Open Access Zinc transporter ZIP7 is a novel determinant of ferroptosis(Cell Death & Disease, 2021-02) Chen, Po-Han; Wu, Jianli; Xu, Yitong; Ding, Chien-Kuang Cornelia; Mestre, Alexander A; Lin, Chao-Chieh; Yang, Wen-Hsuan; Chi, Jen-TsanAbstractFerroptosis is a newly described form of regulated cell death triggered by oxidative stresses and characterized by extensive lipid peroxidation and membrane damages. The name of ferroptosis indicates that the ferroptotic death process depends on iron, but not other metals, as one of its canonical features. Here, we reported that zinc is also essential for ferroptosis in breast and renal cancer cells. Zinc chelator suppressed ferroptosis, and zinc addition promoted ferroptosis, even during iron chelation. By interrogating zinc-related genes in a genome-wide RNAi screen of ferroptosis, we identified SLC39A7, encoding ZIP7 that controls zinc transport from endoplasmic reticulum (ER) to cytosol, as a novel genetic determinant of ferroptosis. Genetic and chemical inhibition of the ZIP7 protected cells against ferroptosis, and the ferroptosis protection upon ZIP7 knockdown can be abolished by zinc supplementation. We found that the genetic and chemical inhibition of ZIP7 triggered ER stresses, including the induction of the expression of HERPUD1 and ATF3. Importantly, the knockdown of HERPUD1 abolished the ferroptosis protection phenotypes of ZIP7 inhibition. Together, we have uncovered an unexpected role of ZIP7 in ferroptosis by maintaining ER homeostasis. These findings may have therapeutic implications for human diseases involving ferroptosis and zinc dysregulations.