Browsing by Author "Yeh, Shuyuan"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access CCDC62/ERAP75 functions as a coactivator to enhance estrogen receptor beta-mediated transactivation and target gene expression in prostate cancer cells.(Carcinogenesis, 2009-05) Chen, Ming; Ni, Jing; Chang, Hong-Chiang; Lin, Chen-Yong; Muyan, Mesut; Yeh, ShuyuanHuman prostate cancer (PCa) and prostate epithelial cells predominantly express estrogen receptor (ER) beta, but not ERalpha. ERbeta might utilize various ER coregulators to mediate the E2-signaling pathway in PCa. Here, we identified coiled-coil domain containing 62 (CCDC62)/ERAP75 as a novel ER coactivator. CCDC62/ERAP75 is widely expressed in PCa cell lines and has low expression in MCF7 cells. Both in vitro and in vivo interaction assays using mammalian two-hybrid, glutathione S-transferase pull-down and coimmunoprecipitation methods proved that ERbeta can interact with the C-terminus of CCDC62/ERAP75 via the ligand-binding domain. The first LXXLL motif within CCDC62/ERAP75 is required for the interaction between ERbeta and CCDC62/ERAP75. Electrophoretic mobility shift assay showed that CCDC62/ERAP75 can be recruited by the estrogen response element-ER complex in the presence of ligand. Furthermore, a chromatin immunoprecipitation assay demonstrated the hormone-dependent recruitment of CCDC62/ERAP75 within the promoter of the estrogen-responsive gene cyclin D1. In addition, using silencing RNA (siRNA) against endogeneous CCDC62/ERAP75, we demonstrated that inhibition of endogenous CCDC62/ERAP75 results in the suppression of ERbeta-mediated transactivation as well as target gene expression in LNCaP cells. More importantly, using the tet-on overexpression system, we showed that induced expression of CCDC62/ERAP75 can enhance the E2-regulated cyclin D1 expression and cell growth in LNCaP cells. Together, our results revealed the role of CCDC62/ERAP75 as a novel coactivator in PCa cells that can modulate ERbeta transactivation and receptor function.Item Open Access Defects of prostate development and reproductive system in the estrogen receptor-alpha null male mice.(Endocrinology, 2009-01) Chen, Ming; Hsu, Iawen; Wolfe, Andrew; Radovick, Sally; Huang, KuoHsiang; Yu, Shengqiang; Chang, Chawnshang; Messing, Edward M; Yeh, ShuyuanThe estrogen receptor-alpha knockout (ERalphaKO, ERalpha-/-) mice were generated via the Cre-loxP system by mating floxed ERalpha mice with beta-actin (ACTB)-Cre mice. The impact of ERalpha gene deletion in the male reproductive system was investigated. The ACTB-Cre/ERalpha(-/-) male mice are infertile and have lost 90% of epididymal sperm when compared with wild-type mice. Serum testosterone levels in ACTB-Cre/ERalpha(-/-) male mice are 2-fold elevated. The ACTB-Cre/ERalpha(-/-) testes consist of atrophic and degenerating seminiferous tubules with less cellularity in the disorganized seminiferous epithelia. Furthermore, the ventral and dorsal-lateral prostates of ACTB-Cre/ERalpha(-/-) mice display reduced branching morphogenesis. Loss of ERalpha could also be responsible for the decreased fibroblast proliferation and changes in the stromal content. In addition, we found bone morphogenetic protein, a mesenchymal inhibitor of prostatic branching morphogenesis, is significantly up-regulated in the ACTB-Cre/ERalpha(-/-) prostates. Collectively, these results suggest that ERalpha is required for male fertility, acts through a paracrine mechanism to regulate prostatic branching morphogenesis, and is involved in the proliferation and differentiation of prostatic stromal compartment.Item Open Access Loss of epithelial oestrogen receptor α inhibits oestrogen-stimulated prostate proliferation and squamous metaplasia via in vivo tissue selective knockout models.(The Journal of pathology, 2012-01) Chen, Ming; Yeh, Chiuan-Ren; Chang, Hong-Chiang; Vitkus, Spencer; Wen, Xing-Qiao; Bhowmick, Neil A; Wolfe, Andrew; Yeh, ShuyuanSquamous metaplasia (SQM) is a specific phenotype in response to oestrogen in the prostate and oestrogen receptor (ER) α is required to mediate this response. Previous studies utilizing tissue recombination with seminal vesicle (SV) mesenchyme and prostatic ductal tips from wild type and ERαKO mice suggested that both epithelial and stromal ERα are necessary for SQM. However, tissue recombination is conducted in the renal capsule of immune-deficient mice, in which the microenvironment is different from normal prostate microenvironment in the intact mice. Furthermore, whether the requirement of stromal ERα in the SV for developing SQM is the same as in the prostate is unknown. Therefore, there is a clear need to evaluate the respective roles of ERα in prostate epithelial versus stromal compartments in the intact mouse. Here we generated a mouse model that has selectively lost ERα in either stromal (FSP-ERαKO) or epithelial prostate cells (pes-ERαKO) to determine the requirements of ERα for oestrogen-stimulated prostate proliferation and SQM. Our results indicated that FSP-ERαKO prostates develop full and uniform SQM, which suggests that loss of the majority (~65%) of stromal ERα will not influence oestrogen-mediated SQM. In contrast, loss of epithelial ERα inhibits oestrogen-mediated prostate growth and SQM evidenced by decreasing cytokertin 10 positive squamous cell stratification and differentiation, by reduced ERα protein expression in SQM compared to wild type mice ERα, and by the presence of normal proliferative activities in the oestrogen-treated pes-ERαKO prostates. These in vivo results suggest that epithelial ERα is required for oestrogen-mediated proliferative response and could be an appropriate target for preventing aberrant oestrogen signalling in the prostate.Item Open Access Reduced prostate branching morphogenesis in stromal fibroblast, but not in epithelial, estrogen receptor α knockout mice.(Asian journal of andrology, 2012-07) Chen, Ming; Yeh, Chiuan-Ren; Shyr, Chih-Rong; Lin, Hsiu-Hsia; Da, Jun; Yeh, ShuyuanEarly studies suggested that estrogen receptor alpha (ERα) is involved in estrogen-mediated imprinting effects in prostate development. We recently reported a more complete ERα knockout (KO) mouse model via mating β-actin Cre transgenic mice with floxed ERα mice. These ACTB-ERαKO male mice showed defects in prostatic branching morphogenesis, which demonstrates that ERα is necessary to maintain proliferative events in the prostate. However, within which prostate cell type ERα exerts those important functions remains to be elucidated. To address this, we have bred floxed ERα mice with either fibroblast-specific protein (FSP)-Cre or probasin-Cre transgenic mice to generate a mouse model that has deleted ERα gene in either stromal fibroblast (FSP-ERαKO) or epithelial (pes-ERαKO) prostate cells. We found that circulating testosterone and fertility were not altered in FSP-ERαKO and pes-ERαKO male mice. Prostates of FSP-ERαKO mice have less branching morphogenesis compared to that of wild-type littermates. Further analyses indicated that loss of stromal ERα leads to increased stromal apoptosis, reduced expression of insulin-like growth factor-1 (IGF-1) and FGF10, and increased expression of BMP4. Collectively, we have established the first in vivo prostate stromal and epithelial selective ERαKO mouse models and the results from these mice indicated that stromal fibroblast ERα plays important roles in prostatic branching morphogenesis via a paracrine fashion. Selective deletion of the ERα gene in mouse prostate epithelial cells by probasin-Cre does not affect the regular prostate development and homeostasis.Item Open Access Tocopherol-associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3-kinase pathway.(Cancer research, 2005-11) Ni, Jing; Wen, Xingqiao; Yao, Jorge; Chang, Hong-Chiang; Yin, Yi; Zhang, Min; Xie, Shaozhen; Chen, Ming; Simons, Brenna; Chang, Philip; di Sant'Agnese, Anthony; Messing, Edward M; Yeh, ShuyuanEpidemiologic studies suggested that vitamin E has a protective effect against prostate cancer. We showed here that tocopherol-associated protein (TAP), a vitamin E-binding protein, promoted vitamin E uptake and facilitated vitamin E antiproliferation effect in prostate cancer cells. Interestingly, without vitamin E treatment, overexpression of TAP in prostate cancer cells significantly suppressed cell growth; knockdown of endogenous TAP by TAP small interfering RNA (siRNA) in nonmalignant prostate HPr-1 cells increased cell growth. Further mechanism dissection studies suggested that the tumor suppressor function of TAP was via down-regulation of phosphoinositide 3-kinase (PI3K)/Akt signaling, but not by modulating cell cycle arrest or androgen receptor signaling. Immunoprecipitation results indicated that TAP inhibited the interaction of PI3K subunits, p110 with p85, and subsequently reduced Akt activity. Constitutively active Akt could negate the TAP-suppressive activity on prostate cancer cell growth. Moreover, stable transfection of TAP in LNCaP cells suppressed LNCaP tumor incidence and growth rate in nude mice. Furthermore, TAP mRNA and protein expression levels were significantly down-regulated in human prostate cancer tissue samples compared with benign prostate tissues as measured by reverse transcription-PCR, in situ hybridization, and immunohistochemistry. Together, our data suggest that TAP not only mediates vitamin E absorption to facilitate vitamin E antiproliferation effect in prostate cancer cells, but also functions like a tumor suppressor gene to control cancer cell viability through a non-vitamin E manner. Therefore, TAP may represent a new prognostic marker for prostate cancer progression.