Browsing by Author "Yu, Jing"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Advances to Bayesian network inference for generating causal networks from observational biological data.(Bioinformatics, 2004-12-12) Yu, Jing; Smith, V Anne; Wang, Paul P; Hartemink, Alexander J; Jarvis, Erich DMOTIVATION: Network inference algorithms are powerful computational tools for identifying putative causal interactions among variables from observational data. Bayesian network inference algorithms hold particular promise in that they can capture linear, non-linear, combinatorial, stochastic and other types of relationships among variables across multiple levels of biological organization. However, challenges remain when applying these algorithms to limited quantities of experimental data collected from biological systems. Here, we use a simulation approach to make advances in our dynamic Bayesian network (DBN) inference algorithm, especially in the context of limited quantities of biological data. RESULTS: We test a range of scoring metrics and search heuristics to find an effective algorithm configuration for evaluating our methodological advances. We also identify sampling intervals and levels of data discretization that allow the best recovery of the simulated networks. We develop a novel influence score for DBNs that attempts to estimate both the sign (activation or repression) and relative magnitude of interactions among variables. When faced with limited quantities of observational data, combining our influence score with moderate data interpolation reduces a significant portion of false positive interactions in the recovered networks. Together, our advances allow DBN inference algorithms to be more effective in recovering biological networks from experimentally collected data. AVAILABILITY: Source code and simulated data are available upon request. SUPPLEMENTARY INFORMATION: http://www.jarvislab.net/Bioinformatics/BNAdvances/Item Open Access Avian brains and a new understanding of vertebrate brain evolution.(Nat Rev Neurosci, 2005-02) Jarvis, Erich D; Güntürkün, Onur; Bruce, Laura; Csillag, András; Karten, Harvey; Kuenzel, Wayne; Medina, Loreta; Paxinos, George; Perkel, David J; Shimizu, Toru; Striedter, Georg; Wild, J Martin; Ball, Gregory F; Dugas-Ford, Jennifer; Durand, Sarah E; Hough, Gerald E; Husband, Scott; Kubikova, Lubica; Lee, Diane W; Mello, Claudio V; Powers, Alice; Siang, Connie; Smulders, Tom V; Wada, Kazuhiro; White, Stephanie A; Yamamoto, Keiko; Yu, Jing; Reiner, Anton; Butler, Ann B; Avian Brain Nomenclature ConsortiumWe believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain - in particular the neocortex-like cognitive functions of the avian pallium - requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.Item Open Access Computational inference of neural information flow networks.(PLoS Comput Biol, 2006-11-24) Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich DDetermining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.Item Restricted Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns.(J Comp Neurol, 2013-11) Jarvis, Erich D; Yu, Jing; Rivas, Miriam V; Horita, Haruhito; Feenders, Gesa; Whitney, Osceola; Jarvis, Syrus C; Jarvis, Electra R; Kubikova, Lubica; Puck, Ana EP; Siang-Bakshi, Connie; Martin, Suzanne; McElroy, Michael; Hara, Erina; Howard, Jason; Pfenning, Andreas; Mouritsen, Henrik; Chen, Chun-Chun; Wada, KazuhiroBased on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals.Item Open Access Revised nomenclature for avian telencephalon and some related brainstem nuclei.(J Comp Neurol, 2004-05-31) Reiner, Anton; Perkel, David J; Bruce, Laura L; Butler, Ann B; Csillag, András; Kuenzel, Wayne; Medina, Loreta; Paxinos, George; Shimizu, Toru; Striedter, Georg; Wild, Martin; Ball, Gregory F; Durand, Sarah; Güntürkün, Onur; Lee, Diane W; Mello, Claudio V; Powers, Alice; White, Stephanie A; Hough, Gerald; Kubikova, Lubica; Smulders, Tom V; Wada, Kazuhiro; Dugas-Ford, Jennifer; Husband, Scott; Yamamoto, Keiko; Yu, Jing; Siang, Connie; Jarvis, Erich D; Avian Brain Nomenclature ForumThe standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of gamma-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. Further information is available at http://avianbrain.org