Browsing by Author "Yuan, Hsiangkuo"
- Results Per Page
- Sort Options
Item Open Access A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.(Theranostics, 2015) Liu, Yang; Ashton, Jeffrey R; Moding, Everett J; Yuan, Hsiangkuo; Register, Janna K; Fales, Andrew M; Choi, Jaeyeon; Whitley, Melodi J; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R; Kirsch, David G; Badea, Cristian T; Vo-Dinh, TuanNanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.Item Open Access Plasmonic Gold Nanostars: a Novel Theranostic Nanoplatform(2012) Yuan, HsiangkuoThe advancement in nanotechnology creates a new perspective on future medicine. With more and more understanding on controlling the functional behavior of the nanoplatform, scientists nowadays are aiming to improve the health care system by offering personalized medicine through nanotechnology. Lots of emphasis have been placed on a promising field called theranostics, which integrate imaging and therapeutic functions into one, that not only offers monitoring and imaging of the biological process, but also provides diagnosis and drug delivery simultaneously. Plasmonic gold nanostars, because of its anisotropic geometry and unique plasmonic property, have become one of the most anticipated nanoplatform in the field of nanotheranostics, aiming to achieve superior plasmonic properties for biomedical applications. The work herein will provide an introduction to the related field on plasmonics, nanobiophotonics and nanotheranostics. A facile plasmon-tunable surfactant-free nanostars synthesis method is described followed by an extensive characterization both computationally and experimentally. Its superior plasmon behavior on two-photon photoluminescence imaging and surface-enhanced Raman scattering detection are demonstrated both in cells and in animals. Therapeutic function assessment is carried out both as drug carriers (photodynamic therapy) and as endogenous stimulus responsive agents (photothermal therapy). Finally, the nanostars' cellular uptake mechanism is investigated based on nanostars' endogenous contrast; an enhanced photothermal therapy is achieved using an ultralow irradiance that has ever published. With nanostars being a novel and powerful theranostic agent, the potentials implication lies in the study of their pharmacokinetics, targeted delivery, diagnostic imaging, and toxicity.