Browsing by Author "Yuan, Xin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access An integrated transcriptome and expressed variant analysis of sepsis survival and death.(Genome Med, 2014) Tsalik, Ephraim L; Langley, Raymond J; Dinwiddie, Darrell L; Miller, Neil A; Yoo, Byunggil; van Velkinburgh, Jennifer C; Smith, Laurie D; Thiffault, Isabella; Jaehne, Anja K; Valente, Ashlee M; Henao, Ricardo; Yuan, Xin; Glickman, Seth W; Rice, Brandon J; McClain, Micah T; Carin, Lawrence; Corey, G Ralph; Ginsburg, Geoffrey S; Cairns, Charles B; Otero, Ronny M; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen FBACKGROUND: Sepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality. METHODS: The Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (SIRS due to infection), including 78 sepsis survivors and 28 sepsis non-survivors who had previously undergone plasma proteomic and metabolomic profiling. Gene expression differences were identified between sepsis survivors, sepsis non-survivors, and SIRS followed by gene enrichment pathway analysis. Expressed sequence variants were identified followed by testing for association with sepsis outcomes. RESULTS: The expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflecting immune activation in sepsis. Expression of 1,238 genes differed with sepsis outcome: non-survivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease-rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors. The presence of variants was associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology. CONCLUSIONS: The activation of immune response-related genes seen in sepsis survivors was muted in sepsis non-survivors. The association of sepsis survival with a robust immune response and the presence of missense variants in VPS9D1 warrants replication and further functional studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT00258869. Registered on 23 November 2005.Item Open Access Coded aperture compressive temporal imaging.(Opt Express, 2013-05-06) Llull, Patrick; Liao, Xuejun; Yuan, Xin; Yang, Jianbo; Kittle, David; Carin, Lawrence; Sapiro, Guillermo; Brady, David JWe use mechanical translation of a coded aperture for code division multiple access compression of video. We discuss the compressed video's temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.