Browsing by Author "Yue, David T"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels.(Nature, 2008-02-14) Dick, Ivy E; Tadross, Michael R; Liang, Haoya; Tay, Lai Hock; Yang, Wanjun; Yue, David TCa2+/calmodulin-dependent regulation of voltage-gated CaV1-2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel's carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-microM Ca2+ pulses driven by the associated channel, a behaviour defined as 'local Ca2+ selectivity'. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This 'global Ca2+ selectivity' satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel's amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity.Item Open Access Ca2+ channel nanodomains boost local Ca2+ amplitude.(Proc Natl Acad Sci U S A, 2013-09-24) Tadross, Michael R; Tsien, Richard W; Yue, David TLocal Ca(2+) signals through voltage-gated Ca(2+) channels (CaVs) drive synaptic transmission, neural plasticity, and cardiac contraction. Despite the importance of these events, the fundamental relationship between flux through a single CaV channel and the Ca(2+) signaling concentration within nanometers of its pore has resisted empirical determination, owing to limitations in the spatial resolution and specificity of fluorescence-based Ca(2+) measurements. Here, we exploited Ca(2+)-dependent inactivation of CaV channels as a nanometer-range Ca(2+) indicator specific to active channels. We observed an unexpected and dramatic boost in nanodomain Ca(2+) amplitude, ten-fold higher than predicted on theoretical grounds. Our results uncover a striking feature of CaV nanodomains, as diffusion-restricted environments that amplify small Ca(2+) fluxes into enormous local Ca(2+) concentrations. This Ca(2+) tuning by the physical composition of the nanodomain may represent an energy-efficient means of local amplification that maximizes information signaling capacity, while minimizing global Ca(2+) load.Item Open Access Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel.(Cell, 2008-06-27) Tadross, Michael R; Dick, Ivy E; Yue, David TCalmodulin (CaM) in complex with Ca(2+) channels constitutes a prototype for Ca(2+) sensors that are intimately colocalized with Ca(2+) sources. The C-lobe of CaM senses local, large Ca(2+) oscillations due to Ca(2+) influx from the host channel, and the N-lobe senses global, albeit diminutive Ca(2+) changes arising from distant sources. Though biologically essential, the mechanism underlying global Ca(2+) sensing has remained unknown. Here, we advance a theory of how global selectivity arises, and we experimentally validate this proposal with methodologies enabling millisecond control of Ca(2+) oscillations seen by the CaM/channel complex. We find that global selectivity arises from rapid Ca(2+) release from CaM combined with greater affinity of the channel for Ca(2+)-free versus Ca(2+)-bound CaM. The emergence of complex decoding properties from the juxtaposition of common elements, and the techniques developed herein, promise generalization to numerous molecules residing near Ca(2+) sources.Item Open Access Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels.(J Gen Physiol, 2010-03) Tadross, Michael R; Ben Johny, Manu; Yue, David TCa(2+)/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca(2+) channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation in distinctive ways, depending on which hypothesis holds true. Thus, we systematically mutate the activation gate, formed by all S6 segments within Ca(V)1.3. These channels feature robust baseline CDI, and the resulting mutant library exhibits significant diversity of activation, CDI, and VDI. For CDI, a clear and previously unreported pattern emerges: activation-enhancing mutations proportionately weaken inactivation. This outcome substantiates an allosteric CDI mechanism. For VDI, the data implicate a "hinged lid-shield" mechanism, similar to a hinged-lid process, with a previously unrecognized feature. Namely, we detect a "shield" in Ca(V)1.3 channels that is specialized to repel lid closure. These findings reveal long-sought downstream mechanisms of inactivation and may furnish a framework for the understanding of Ca(2+) channelopathies involving S6 mutations.Item Open Access Systematic mapping of the state dependence of voltage- and Ca2+-dependent inactivation using simple open-channel measurements.(J Gen Physiol, 2010-03) Tadross, Michael R; Yue, David TThe state from which channel inactivation occurs is both biologically and mechanistically critical. For example, preferential closed-state inactivation is potentiated in certain Ca(2+) channel splice variants, yielding an enhancement of inactivation during action potential trains, which has important consequences for short-term synaptic plasticity. Mechanistically, the structural substrates of inactivation are now being resolved, yielding a growing library of molecular snapshots, ripe for functional interpretation. For these reasons, there is an increasing need for experimentally direct and systematic means of determining the states from which inactivation proceeds. Although many approaches have been devised, most rely upon numerical models that require detailed knowledge of channel-state topology and gating parameters. Moreover, prior strategies have only addressed voltage-dependent forms of inactivation (VDI), and have not been readily applicable to Ca(2+)-dependent inactivation (CDI), a vital form of regulation in numerous contexts. Here, we devise a simple yet systematic approach, applicable to both VDI and CDI, for semiquantitative mapping of the states from which inactivation occurs, based only on open-channel measurements. The method is relatively insensitive to the specifics of channel gating and does not require detailed knowledge of state topology or gating parameters. Rather than numerical models, we derive analytic equations that permit determination of the states from which inactivation occurs, based on direct manipulation of data. We apply this methodology to both VDI and CDI of Ca(V)1.3 Ca(2+) channels. VDI is found to proceed almost exclusively from the open state. CDI proceeds equally from the open and nearby closed states, but is disfavored from deep closed states distant from the open conformation. In all, these outcomes substantiate and enrich conclusions of our companion paper in this issue (Tadross et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910308) that deduces endpoint mechanisms of VDI and CDI in Ca(V)1.3. More broadly, the methods introduced herein can be readily generalized for the analysis of other channel types.