Browsing by Author "Zhang, Jinying"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cardiac cell-integrated microneedle patch for treating myocardial infarction.(Science advances, 2018-11) Tang, Junnan; Wang, Jinqiang; Huang, Ke; Ye, Yanqi; Su, Teng; Qiao, Li; Hensley, Michael Taylor; Caranasos, Thomas George; Zhang, Jinying; Gu, Zhen; Cheng, KeWe engineered a microneedle patch integrated with cardiac stromal cells (MN-CSCs) for therapeutic heart regeneration after acute myocardial infarction (MI). To perform cell-based heart regeneration, cells are currently delivered to the heart via direct muscle injection, intravascular infusion, or transplantation of epicardial patches. The first two approaches suffer from poor cell retention, while epicardial patches integrate slowly with host myocardium. Here, we used polymeric MNs to create "channels" between host myocardium and therapeutic CSCs. These channels allow regenerative factors secreted by CSCs to be released into the injured myocardium to promote heart repair. In the rat MI model study, the application of the MN-CSC patch effectively augmented cardiac functions and enhanced angiomyogenesis. In the porcine MI model study, MN-CSC patch application was nontoxic and resulted in cardiac function protection. The MN system represents an innovative approach delivering therapeutic cells for heart regeneration.Item Open Access Targeted repair of heart injury by stem cells fused with platelet nanovesicles.(Nature biomedical engineering, 2018-01) Tang, Junnan; Su, Teng; Huang, Ke; Dinh, Phuong-Uyen; Wang, Zegen; Vandergriff, Adam; Hensley, Michael T; Cores, Jhon; Allen, Tyler; Li, Taosheng; Sproul, Erin; Mihalko, Emily; Lobo, Leonard J; Ruterbories, Laura; Lynch, Alex; Brown, Ashley; Caranasos, Thomas G; Shen, Deliang; Stouffer, George A; Gu, Zhen; Zhang, Jinying; Cheng, KeStem cell transplantation, as used clinically, suffers from low retention and engraftment of the transplanted cells. Inspired by the ability of platelets to recruit stem cells to sites of injury on blood vessels, we hypothesized that platelets might enhance the vascular delivery of cardiac stem cells (CSCs) to sites of myocardial infarction injury. Here, we show that CSCs with platelet nanovesicles fused onto their surface membranes express platelet surface markers that are associated with platelet adhesion to injury sites. We also find that the modified CSCs selectively bind collagen-coated surfaces and endothelium-denuded rat aortas, and that in rat and porcine models of acute myocardial infarction the modified CSCs increase retention in the heart and reduce infarct size. Platelet-nanovesicle-fused CSCs thus possess the natural targeting and repairing ability of their parental cell types. This stem cell manipulation approach is fast, straightforward and safe, does not require genetic alteration of the cells, and should be generalizable to multiple cell types.