Browsing by Author "Zhang, Yuqiang"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Increased labor losses and decreased adaptation potential in a warmer world.(Nature communications, 2021-12) Parsons, Luke A; Shindell, Drew; Tigchelaar, Michelle; Zhang, Yuqiang; Spector, June TWorking in hot and potentially humid conditions creates health and well-being risks that will increase as the planet warms. It has been proposed that workers could adapt to increasing temperatures by moving labor from midday to cooler hours. Here, we use reanalysis data to show that in the current climate approximately 30% of global heavy labor losses in the workday could be recovered by moving labor from the hottest hours of the day. However, we show that this particular workshift adaptation potential is lost at a rate of about 2% per degree of global warming as early morning heat exposure rises to unsafe levels for continuous work, with worker productivity losses accelerating under higher warming levels. These findings emphasize the importance of finding alternative adaptation mechanisms to keep workers safe, as well as the importance of limiting global warming.Item Open Access Surface Ozone Change in China from 2010 to 2017 and its Impact on Crop Yield(2020-04-24) Li, DianyiAmbient Ozone (O3) exposure is considered to impose negative impacts on plants and crops. In this study, we performed a comprehensive estimation on the crop yield losses attribute to surface O3 in China from 2010 to 2017 applying the model predicted ambient ozone concertation across China. Spatial and temporal distribution of relative yield loss and crop production loss was calculated using AOT40 metrics (hourly ozone concentration over a threshold of 0.04 ppm h over the growing season). Our results show that from 2010 to 2017, national average AOT40 level ranges from 44 ppm h in 2010 to 71 ppm h in 2014. By using concentration response function, we then calculated the crops relative yields, including wheat, rice, maize and soybean from surface ozone, and found that average O3 induced crop yield loss were around 44.67 million Mt, 44.74 million Mt, 7.41 million Mt, and 0.38 million Mt individually, inducing average economic loss of $15.76Billion, $20.33Billion, $0.58 Billion, and $0.29Billion accordingly. Our results provided quantitative estimation on crop yield loss and its economic cost from ambient ozone concentration and improved the understanding of crop and spatial sensitivity to ozone impact.Item Open Access Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States.(Proceedings of the National Academy of Sciences of the United States of America, 2021-11) Shindell, Drew; Ru, Muye; Zhang, Yuqiang; Seltzer, Karl; Faluvegi, Greg; Nazarenko, Larissa; Schmidt, Gavin A; Parsons, Luke; Challapalli, Ariyani; Yang, Longyi; Glick, AlexSocietal benefits from climate change mitigation accrue via multiple pathways. We examine the US impacts of emission changes on several factors that are affected by both climate and air quality responses. Nationwide benefits through midcentury stem primarily from air quality improvements, which are realized rapidly, and include human health, labor productivity, and crop yield benefits. Benefits from reduced heat exposure become large around 2060, thereafter often dominating over those from improved air quality. Monetized benefits are in the tens of trillions of dollars for avoided deaths and tens of billions for labor productivity and crop yield increases and reduced hospital expenditures. Total monetized benefits this century are dominated by health and are much larger than in previous analyses due to improved understanding of the human health impacts of exposure to both heat and air pollution. Benefit-cost ratios are therefore much larger than in prior studies, especially those that neglected clean air benefits. Specifically, benefits from clean air exceed costs in the first decade, whereas benefits from climate alone exceed costs in the latter half of the century. Furthermore, monetized US benefits largely stem from US emissions reductions. Increased emphasis on the localized, near-term air quality-related impacts would better align policies with societal benefits and, by reducing the mismatch between perception of climate as a risk distant in space and time and the need for rapid action to mitigate long-term climate change, might help increase acceptance of mitigation policies.Item Open Access The Effects of Heat Exposure on Human Mortality Throughout the United States.(GeoHealth, 2020-04) Shindell, Drew; Zhang, Yuqiang; Scott, Melissa; Ru, Muye; Stark, Krista; Ebi, Kristie LExposure to high ambient temperatures is an important cause of avoidable, premature death that may become more prevalent under climate change. Though extensive epidemiological data are available in the United States, they are largely limited to select large cities, and hence, most projections estimate the potential impact of future warming on a subset of the U.S. population. Here we utilize evaluations of the relative risk of premature death associated with temperature in 10 U.S. cities spanning a wide range of climate conditions to develop a generalized risk function. We first evaluate the performance of this generalized function, which introduces substantial biases at the individual city level but performs well at the large scale. We then apply this function to estimate the impacts of projected climate change on heat-related nationwide U.S. deaths under a range of scenarios. During the current decade, there are 12,000 (95% confidence interval 7,400-16,500) premature deaths annually in the contiguous United States, much larger than most estimates based on totals for select individual cities. These values increase by 97,000 (60,000-134,000) under the high-warming Representative Concentration Pathway (RCP) 8.5 scenario and by 36,000 (22,000-50,000) under the moderate RCP4.5 scenario by 2100, whereas they remain statistically unchanged under the aggressive mitigation scenario RCP2.6. These results include estimates of adaptation that reduce impacts by ~40-45% as well as population increases that roughly offset adaptation. The results suggest that the degree of climate change mitigation will have important health impacts on Americans.