Browsing by Author "Zhao, Yu Chen"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Novel genetic variants in HDAC2 and PPARGC1A of the CREB-binding protein pathway predict survival of non-small-cell lung cancer.(Molecular carcinogenesis, 2019-11-12) Tang, Dongfang; Zhao, Yu Chen; Qian, Danwen; Liu, Hongliang; Luo, Sheng; Patz, Edward F; Moorman, Patricia G; Su, Li; Shen, Sipeng; Christiani, David C; Glass, Carolyn; Gao, Wen; Wei, QingyiThe CREB-binding protein (CBP) pathway plays an important role in transcription and activity of acetyltransferase that acetylates lysine residues of histones and nonhistone proteins. In the present study, we hypothesized that genetic variants in the CBP pathway genes played a role in survival of non-small-cell lung cancer (NSCLC). We tested this hypothesis using the genotyping data from the genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. In the single-locus analysis, we evaluated associations between 13 176 (1107 genotyped and 12 069 imputed) single-nucleotide polymorphisms (SNPs) in 72 genes and survival of 1185 patients with NSCLC. The identified 106 significant SNPs in the discovery were further validated in additional genotyping data from another GWAS dataset of 984 patients with NSCLC in the Harvard Lung Cancer Susceptibility Study. The combined results of two datasets showed that two independent, potentially functional SNPs (i.e., HDAC2 rs13213007G>A and PPARGC1A rs60571065T>A) were significantly associated with NSCLC overall survival, with a combined hazards ratio (HR) of 1.26 (95% confidence interval (CI), 1.09-1.45; P = .002) and 1.23 (1.04-1.47; P = .017), respectively. Furthermore, we performed an expression quantitative trait loci analysis and found that the survival-associated HDAC2 rs13213007A allele (GA+AA), but not PPARGC1A rs60571065A allele (TA+AA), was significantly associated with increased messenger RNA expression levels of HDAC2 in 373 lymphoblastoid cell lines. These results indicate that the HDAC2 rs13213007A allele is a potential predictor of NSCLC survival, likely by altering the HDAC2 expression.Item Open Access Novel Genetic Variants of ALG6 and GALNTL4 of the Glycosylation Pathway Predict Cutaneous Melanoma-Specific Survival.(Cancers, 2020-01-24) Zhou, Bingrong; Zhao, Yu Chen; Liu, Hongliang; Luo, Sheng; Amos, Christopher I; Lee, Jeffrey E; Li, Xin; Nan, Hongmei; Wei, QingyiBecause aberrant glycosylation is known to play a role in the progression of melanoma, we hypothesize that genetic variants of glycosylation pathway genes are associated with the survival of cutaneous melanoma (CM) patients. To test this hypothesis, we used a Cox proportional hazards regression model in a single-locus analysis to evaluate associations between 34,096 genetic variants of 227 glycosylation pathway genes and CM disease-specific survival (CMSS) using genotyping data from two previously published genome-wide association studies. The discovery dataset included 858 CM patients with 95 deaths from The University of Texas MD Anderson Cancer Center, and the replication dataset included 409 CM patients with 48 deaths from Harvard University nurse/physician cohorts. In the multivariable Cox regression analysis, we found that two novel single-nucleotide polymorphisms (SNPs) (ALG6 rs10889417 G>A and GALNTL4 rs12270446 G>C) predicted CMSS, with an adjusted hazards ratios of 0.60 (95% confidence interval = 0.44-0.83 and p = 0.002) and 0.66 (0.52-0.84 and 0.004), respectively. Subsequent expression quantitative trait loci (eQTL) analysis revealed that ALG6 rs10889417 was associated with mRNA expression levels in the cultured skin fibroblasts and whole blood cells and that GALNTL4 rs12270446 was associated with mRNA expression levels in the skin tissues (all p < 0.05). Our findings suggest that, once validated by other large patient cohorts, these two novel SNPs in the glycosylation pathway genes may be useful prognostic biomarkers for CMSS, likely through modulating their gene expression.Item Open Access Novel variants of ELP2 and PIAS1 in the interferon gamma signaling pathway are associated with non-small cell lung cancer survival.(Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2020-06-03) Zhao, Yu Chen; Tang, Dongfang; Yang, Sen; Liu, Hongliang; Luo, Sheng; Stinchcombe, Thomas E; Glass, Carolyn; Su, Li; Shen, Sipeng; Christiani, David C; Wei, QingyiBACKGROUND:Interferon gamma (IFNγ) is a pleiotropic cytokine that plays critical immunomodulatory roles in intercellular communication in innate and adaptive immune responses. Despite recognition of IFNγ signaling effects on host defense against viral infection and its utility in immunotherapy and tumor progression, the roles of genetic variants of the IFNγ signaling pathway genes in cancer patient survival remain unknown. METHODS:We used a discovery genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (n=1,185) and a replication genotyping dataset from the Harvard Lung Cancer Susceptibility Study (n=984) to evaluate associations between 14,553 genetic variants in 150 IFNγ pathway genes and survival of non-small cell lung cancer (NSCLC). RESULTS:The combined analysis identified two independent potentially functional single-nucleotide polymorphisms (SNPs), ELP2 rs7242481G>A and PIAS1 rs1049493T>C, to be significantly associated with NSCLC survival, with a combined hazards ratio (HR) of 0.85 [95% CI= 0.78-0.92, P<0.0001] and 0.87 (0.81-0.93, P<0.0001), respectively. Expression quantitative trait loci analyses showed that the survival-associated ELP2 rs7242481A allele was significantly associated with increased mRNA expression levels of ELP2 in 373 lymphoblastoid cell lines and 369 whole blood samples. The PIAS1 rs1049493C allele was significantly associated with decreased mRNA expression levels of PIAS1 in 383 normal lung tissues and 369 whole blood samples. CONCLUSIONS:Genetic variants of IFNγ signaling genes are potential prognostic markers for NSCLC survival, likely through modulating the expression of key genes involved in host immune response. IMPACT:Once validated, these variants could be useful predictors of NSCLC survival.Item Open Access Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival.(Cancer immunology, immunotherapy : CII, 2021-03-02) Yang, Sen; Tang, Dongfang; Zhao, Yu Chen; Liu, Hongliang; Luo, Sheng; Stinchcombe, Thomas E; Glass, Carolyn; Su, Li; Shen, Sipeng; Christiani, David C; Wang, Qiming; Wei, QingyiBackground
Cellular immunity against tumor cells is highly dependent on antigen presentation by major histocompatibility complex class I (MHC-I) molecules. However, few published studies have investigated associations between functional variants of MHC-I-related genes and clinical outcomes of lung cancer patients.Methods
We performed a two-phase Cox proportional hazards regression analysis by using two previously published genome-wide association studies to evaluate associations between genetic variants in the MHC-I-related gene set and the survival of non-small cell lung cancer (NSCLC) patients, followed by expression quantitative trait loci analysis.Results
Of the 7811 single-nucleotide polymorphisms (SNPs) in 89 genes of 1185 NSCLC patients in the discovery dataset of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, 24 SNPs remained statistically significant after validation in additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study. In a multivariate stepwise Cox model, three independent functional SNPs (ERAP1 rs469783 T > C, PSMF1 rs13040574 C > A and NCF2 rs36071574 G > A) remained significant with an adjusted hazards ratio (HR) of 0.83 [95% confidence interval (CI) = 0.77-0.89, P = 8.0 × 10-7], 0.86 (0.80-0.93, P = 9.4 × 10-5) and 1.31 (1.11-1.54, P = 0.001) for overall survival (OS), respectively. Further combined genotypes revealed a poor survival in a dose-response manner in association with the number of unfavorable genotypes (Ptrend < 0.0001 and 0.0002 for OS and disease-specific survival, respectively). Also, ERAP1 rs469783C and PSMF1 rs13040574A alleles were associated with higher mRNA expression levels of their genes.Conclusion
These potentially functional SNPs of the MHC-I-related genes may be biomarkers for NSCLC survival, possibly through modulating the expression of corresponding genes.