Browsing by Author "Zheng, Na"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity.(Aquatic toxicology (Amsterdam, Netherlands), 2016-01) Chernick, Melissa; Ware, Megan; Albright, Elizabeth; Kwok, Kevin WH; Dong, Wu; Zheng, Na; Hinton, David ESelenium (Se) leaches into water from agricultural soils and from storage sites for coal fly ash. Se toxicity causes population and community level effects in fishes and birds. We used the laboratory aquarium model fish, Japanese medaka (Oryzias latipes), an asynchronous breeder, to determine aspects of uptake in adults and resultant developmental toxicity in their offspring. The superior imaging properties of the model enabled detailed descriptions of phenotypic alterations not commonly reported in the existing Se literature. Adult males and females in treatment groups were exposed, separately and together, to a dry diet spiked with 0, 12.5, 25, or 50 μg/g (dry weight) seleno-L-methionine (SeMet) for 6 days, and their embryo progeny collected for 5 days, maintained under controlled conditions and observed daily for hatchability, mortality and/or developmental toxicity. Sites of alteration included: craniofacial, pericardium and abdomen (Pc/Ab), notochord, gall bladder, spleen, blood, and swim bladder. Next, adult tissue Se concentrations (liver, skeletal muscle, ovary and testis) were determined and compared in treatment groups of bred and unbred individuals. No significant difference was found across treatment groups at the various SeMet concentrations; and, subsequent analysis compared exposed vs. control in each of the treatment groups at 10 dpf. Increased embryo mortality was observed in all treatment groups, compared to controls, and embryos had a decreased hatching rate when both parents were exposed. Exposure resulted in significantly more total altered phenotypes than controls. When altered phenotypes following exposure of both parents were higher than maternal only exposure, a male role was suggested. The comparisons between treatment groups revealed that particular types of phenotypic change may be driven by the sex of the exposed parent. Additionally, breeding reduced Se concentrations in some adult tissues, specifically the liver of exposed females and skeletal muscle of exposed males. Detailed phenotypic analysis of progeny from SeMet exposed parents should inform investigations of later life stages in an effort to determine consequences of early life exposure.Item Open Access The case for thyroid disruption in early life stage exposures to thiram in zebrafish (Danio rerio).(General and comparative endocrinology, 2019-01) Chen, Xing; Fang, Mingliang; Chernick, Melissa; Wang, Feng; Yang, Jingfeng; Yu, Yongli; Zheng, Na; Teraoka, Hiroki; Nanba, Satomi; Hiraga, Takeo; Hinton, David E; Dong, WuThiram, a pesticide in the dithiocarbamate chemical family, is widely used to prevent fungal disease in seeds and crops. Its off-site movement to surface waters occurs and may place aquatic organisms at potential harm. Zebrafish embryos were used for investigation of acute (1 h) thiram exposure (0.001-10 µM) at various developmental stages. Survival decreased at 1 µM and 10 µM and hatching was delayed at 0.1 µM and 1 µM. Notochord curvatures were seen at 0.1 and 1 μM thiram when exposure was initiated at 2 and at 10 hpf. Similar notochord curvatures followed exposure to the known TPO inhibitor, methimazole (MMI). Changes were absent in embryos exposed at later stages, i.e., 12 hpf. In embryos exposed to 0.1 or 1 μM at 10 hpf, levels of the thyroid enzyme, Deiodinase 3, increased by 12 hpf. Thyroid peroxide (TPO), important in T4 synthesis, decreased by 48 hpf in embryos exposed to 1 µM at 10 hpf. Thiram toxicity was stage-dependent and early life stage exposure may be responsible for adverse effects seen later. These effects may be due to impacts on the thyroid via regulation of specific thyroid genes including TPO and Deiodinase 3.Item Open Access Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China.(Ecotoxicology and environmental safety, 2019-05) Dong, Wenjing; Wang, Feng; Fang, Mingliang; Wu, Jie; Wang, Shuaiyu; Li, Ming; Yang, Jingfeng; Chernick, Melissa; Hinton, David E; Pei, De-Sheng; Chen, Hongxing; Zheng, Na; Mu, Jingli; Xie, Lingtian; Dong, WuBohai Bay, in the western region of northeastern China's Bohai Sea, receives water from large rivers containing various pollutants including dioxin-like compounds (DLCs). This study used the established zebrafish (Danio rerio) model, its known developmental toxicity endpoints and sensitive molecular analyses to evaluate sediments near and around an industrial effluent site in Bohai Bay. The primary objective was to assess the efficacy of rapid biological detection methods as an addition to chemical analyses. Embryos were exposed to various concentrations of sediment extracts as well as a 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) positive control. Exposure to sediment extract nearest the discharge site (P1) resulted in the most severe- and highest rates of change in embryos and larvae, suggesting that DLC contaminated sediment probably did not occur much beyond it. P1 extract resulted in concentration dependent increases in mortality and pericardial edema. Its highest concentration caused up-regulation of P-450 (CYP)-1A1(CYP1A) mRNA expression at 72 h post fertilization (hpf), an increase in its expression in gill arches as observed by whole mount in situ hybridization, and an increased signal in the Tg(cyp1a: mCherry) transgenic line. The pattern and magnitude of response was very similar to that of TCDD and supported the presence of DLCs in these sediment samples. Follow-up chemical analysis confirmed this presence and identified H7CDF, O8CDF and O8CDD as the main components in P1 extract. This study validates the use of biological assays as a rapid, sensitive, and cost-effective method to evaluate DLCs and their effects in sediment samples. Additionally, it provides support for the conclusion that DLCs have limited remobilization capacity in marine sediments.