Browsing by Author "Zhong, Pei"
Results Per Page
Sort Options
Item Open Access Adaptable Design Improvements For Electromagnetic Shock Wave Lithotripters And Techniques For Controlling Cavitation(2012) Smith, Nathan BirchardIn this dissertation work, the aim was to garner better mechanistic understanding of how shock wave lithotripsy (SWL) breaks stones in order to guide design improvements to a modern electromagnetic (EM) shock wave lithotripter. To accomplish this goal, experimental studies were carefully designed to isolate mechanisms of fragmentation, and models for wave propagation, fragmentation, and stone motion were developed. In the initial study, a representative EM lithotripter was characterized and tested for in vitro stone comminution efficiency at a variety of field positions and doses using phantom kidney stones of variable hardness, and in different fluid mediums to isolate the contribution of cavitation. Through parametric analysis of the acoustic field measurements alongside comminution results, a logarithmic correlation was determined between average peak pressure incident on the stone surface and comminution efficiency. It was also noted that for a given stone type, the correlations converged to an average peak pressure threshold for fragmentation, independent of fluid medium in use. The correlation of average peak pressure to efficacy supports the rationale for the acoustic lens modifications, which were pursued to simultaneously enhance beam width and optimize the pulse profile of the lithotripter shock wave (LSW) via in situ pulse superposition for improved stone fragmentation by stress waves and cavitation, respectively. In parallel, a numerical model for wave propagation was used to investigate the variations of critical parameters with changes in lens geometry. A consensus was reached on a new lens design based on high-speed imaging and stone comminution experiments against the original lens at a fixed acoustic energy setting. The results have demonstrated that the new lens has improved efficacy away from the focus, where stones may move due to respiration, fragmentation, acoustic radiation forces, or voluntary patient movements. Using traditional theory of brittle fragmentation and newfound understanding of average peak pressure correlation to stone comminution, the entire set of stone comminution data for lens comparison was modeled using a Weibull-style distribution function. This model linked both the average peak pressure and shock wave dose to efficacy, including their respective threshold parameters, and demonstrated correlation of coefficients to cavitation activity. Subsequently, this model was used in prediction of stone comminution efficiency from mimicked respiratory motions in vitro, which compared favorably to actual simulated motion studies using both the new and original lenses. Under a variety of mimicked respiratory motions, the new lens produced statistically higher stone comminution efficiency than the original lens. These results were confirmed in vivo in a swine model, where the new lens produced statistically higher stone comminution after 1,000 and 2,000 shocks. Finally, a mechanistic investigation into the effects of cavitation with the original lens was conducted using an integrated, self-focusing annular ring transducer specially designed for tandem pulse lithotripsy. It was found that cavitation and stone comminution efficiency are progressively enhanced by tandem pulsing as source energies of both the primary LSW and trailing pressure pulse increase, which suggests cavitation and stress waves act synergistically enhance the efficacy in kidney stone fragmentation.
Item Open Access Analysis of Tandem Bubble Interaction and Jet Formation in a Microfluidic Channel(2013) Yang, ChenTandem bubble interactions have been shown to produce jets that can be used to create membrane poration on single cells, and jet speed has been implicated as a critical parameter for tandem bubble-induced bioeffects. In this thesis, the dynamics of single and tandem bubbles in a microfluidic channel (25 × 800 μm in height and width) are investigated to access the effects of bubble size on tandem bubble interaction and resultant jet. Experimentally, the dynamics of bubble oscillation produced by laser irradiation of a gold dot (15 nm thick and 6 μm in diameter) coated on the glass substrate of the microfluidic channel are captured by a high-speed camera, from which the time history of bubble size and jet speed are determined. Numerically, the bubble dynamics are simulated using 3DynaFS-BEM (DYNAFLOW, INC.) based on a potential flow model solved by boundary element method (BEM). By adjusting the initial conditions in the BEM code, the dynamics of laser-generated single bubbles of different sizes were matched with experimental results. The model was subsequently used to simulate the tandem bubble interactions in anti-phase oscillation. The results show that jet shape and volume are predominately controlled by the maximum diameter of the first bubble (D1) while jet speed is linearly correlated with the maximum diameter of the second bubble (D2). In comparison, jet momentum and kinetic energy are more sensitive to variations in bubble size and increase more rapidly with both D1 and D2, especially at large bubble sizes.
Item Open Access Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation.(J Transl Med, 2010-01-27) Liu, Fang; Hu, Zhenlin; Qiu, Lei; Hui, Chun; Li, Chao; Zhong, Pei; Zhang, JunpingBACKGROUND: The conventional treatment protocol in high-intensity focused ultrasound (HIFU) therapy utilizes a dense-scan strategy to produce closely packed thermal lesions aiming at eradicating as much tumor mass as possible. However, this strategy is not most effective in terms of inducing a systemic anti-tumor immunity so that it cannot provide efficient micro-metastatic control and long-term tumor resistance. We have previously provided evidence that HIFU may enhance systemic anti-tumor immunity by in situ activation of dendritic cells (DCs) inside HIFU-treated tumor tissue. The present study was conducted to test the feasibility of a sparse-scan strategy to boost HIFU-induced anti-tumor immune response by more effectively promoting DC maturation. METHODS: An experimental HIFU system was set up to perform tumor ablation experiments in subcutaneous implanted MC-38 and B16 tumor with dense- or sparse-scan strategy to produce closely-packed or separated thermal lesions. DCs infiltration into HIFU-treated tumor tissues was detected by immunohistochemistry and flow cytometry. DCs maturation was evaluated by IL-12/IL-10 production and CD80/CD86 expression after co-culture with tumor cells treated with different HIFU. HIFU-induced anti-tumor immune response was evaluated by detecting growth-retarding effects on distant re-challenged tumor and tumor-specific IFN-gamma-secreting cells in HIFU-treated mice. RESULTS: HIFU exposure raised temperature up to 80 degrees centigrade at beam focus within 4 s in experimental tumors and led to formation of a well-defined thermal lesion. The infiltrated DCs were recruited to the periphery of lesion, where the peak temperature was only 55 degrees centigrade during HIFU exposure. Tumor cells heated to 55 degrees centigrade in 4-s HIFU exposure were more effective to stimulate co-cultured DCs to mature. Sparse-scan HIFU, which can reserve 55 degrees-heated tumor cells surrounding the separated lesions, elicited an enhanced anti-tumor immune response than dense-scan HIFU, while their suppressive effects on the treated primary tumor were maintained at the same level. Flow cytometry analysis showed that sparse-scan HIFU was more effective than dense-scan HIFU in enhancing DC infiltration into tumor tissues and promoting their maturation in situ. CONCLUSION: Optimizing scan strategy is a feasible way to boost HIFU-induced anti-tumor immunity by more effectively promoting DC maturation.Item Open Access Development of a Self-Focusing Multi-Spark Shock Wave Generator for Lithotripsy(2018) Fang, ZhengIn this thesis, a self-focusing multi-spark (SFMS) shock wave generator is developed to provide flexibility in controlling the beam size and shape in an electrohydraulic shock wave lithotripter. Such a device will allow us to better distribute the shock wave energy to match the anatomic features in the urinary collecting system or respiration movement of the stone to improve stone fragmentation efficiency while reducing tissue injury. In this study, we present the design, fabrication and evaluation of the multi-pin titanium electrodes by 3D printing, integration of the SFMS shock wave generator, acoustic field characterization based on hydrophone measurements, and stone fragmentation tests using stone phantoms confined within a polyurethane rubber holder of elliptical shape. The effects of pin number on pressure output and electrode degradation are evaluated in order to produce a consistent pressure waveform with increased electrode lifespan.
Experiments were conducted using two transducer configurations: case 1 (axisymmetric) – with all transducers connected, and case 2 (non-axisymmetric) - with transducers on the two side sections disconnected. A fiber optic probe hydrophone was mounted on a 3D computer controlled translational stage to perform acoustic field characterization. Stone fragmentation test was conducted with stone phantoms placed inside a stone holder made of soft tissue mimicking material polyurethane rubber to evaluate the stone comminution efficiency. To assess the effect of multi-pin design on electrode damage and output pressure variations, transducer lifespan experiments were performed. Specifically, individual transducers used in the SFMS, but with different pin numbers (1, 10, and 45) were fired up to 2000 shocks.
The FOPH measurement results show that the SFMS can generate an axisymmetric focal zone with the -6 dB focal width of 16 mm, or a non-axisymmetric focal zone with the -6 dB focal width elongated to 28 mm in the side-section direction, while in the perpendicular direction the -6 dB focal width is 16 mm, accompanying a peak positive pressure of 39.0±1.8 MPa at an input electric pulse energy of 600 J. Such a focal zone has stone comminution efficiency of 37.68±5.11% and 69.58±8.29% for stone fragment smaller than 2.0 mm and 2.8 mm, respectively, after 150 pulses. After more than 2000 pulses, the pressure output drops only by 2%, and lifespan of the transducer (defined by a peak output pressure drop less than 10%) is expected to exceed 6000 pulses. Altogether, we have demonstrated that the SFMS can generate an elongated non-axisymmetric focal zone with higher stone comminution efficiency, and has significantly increased electrode lifespan. The SFMS shock wave generator may provide a flexible and versatile design to achieve accurate, stable, and safe lithotripsy for kidney stone treatment.
Item Open Access Development of a Vertically Deployed Surface-Acoustic-Wave (VD-SAW) Transducer Platform for Activating Piezo Mechanosensitive Channels(2021) Liao, DefeiUltrasound (US) neuromodulation has the unique advantage to noninvasively manipulate neural activity in deep brain with high spatial resolution and flexibility in beam steering. In recent years, there is a growing interest in producing accurate and cell-type specific US neuromodulation using sonogenetics, in which the targeted cells/neurons are genetically modified via overexpression of mechanosensitive (MS) ion channels that can be activated by US. This emerging technique has spurred extensive research activities with the hope for potential clinical treatment of neurological disorders, such as Parkinson’s disease, epilepsy and depression. It has been proposed by mainstream journals that the neuromodulating effects of US are associated with changes in membrane potential due to US-induced cell/neuron membrane deformation and the activation of MS ion channels, in which the latter mechanism is given greater prominence in sonogenetics. In this process, US exerts its mechanical effects in different forms including acoustic radiation force (ARF, associated with momentum transfer from the US wave field to the medium), acoustic streaming (displacement of fluid), and cavitation (generation of bubbles within the tissue). Despite much efforts in the field, the physical mechanism by which US is converted into an effective energy form to elicit neuromodulation remains poorly understood, and there is little consensus about optimal US parameters required to evoke a sonogenetic response with minimal adverse effect. Understanding how US interacts with cell membrane with specific US parameters/configurations will be important to optimize this technology. A significant barrier to advancing the sonogenetics is the lack of technologies and experimental systems to capture and dissect the dynamic interaction of ultrasound with target cells and the resultant cell membrane deformation (or strain) and its correlation to MS channel dynamics at the single cell level. To resolve these technical challenges, we have developed a novel vertically deployed surface acoustic wave (VD-SAW) transducer platform that can be readily integrated with a fluorescence microscope for simultaneous observation and monitoring of the interaction of US waves with target cells, the mechanical strain and stress in cell membrane, and the resultant bioeffects at the single cell level. In Chapter 1, we introduced the background of US neuromodulation and sonogenetics, followed by a description of the major challenges in this field and the key questions we’re going to address in this dissertation. In Chapter 2, we investigated the activation of Piezo1, one of the few eukaryotic channels known to be responsible to US, by monitoring the intracellular calcium response. We observed that Piezo1 activation is highly determined by shear stress amplitude and pulse length (PL) of the stimulation. Under the same acoustic energy, we identified an optimal PL that leads to maximum cell deformation, and Piezo1 activation rate with minimal injury. Our results suggested the optimal PL is related to the viscoelastic response of cell membrane and the gating dynamics of Piezo1 which has not been considered in previous sonogenetics studies. In Chapter 3, we further constructed a 3D cell culture model in collagen hydrogel to better mimic the realistic cell culture condition. The hydrogel ruled out the involvement of acoustic streaming and thus facilitated the investigation of the role of ARF in sonogenetics which is a more practical form of US energy in vivo. The VD-SAW array integrated with 3D cell culture model was translated to a confocal fluorescence microscope for acquiring the initiation of intracellular calcium response and the cell membrane deformation in 3D. With the system upgrade, we found ARF is more efficient than acoustic streaming for activating Piezo1 channel. We also observed that the Piezo2, a homolog to Piezo1, requires higher power of US than Piezo1 for activation. Interestingly, we found Piezo2 is sensitive to membrane compression, while Piezo1 is sensitive to membrane tension. The observed differences of mechanical sensitivities and activating schemes between Piezo1 and Piezo2 were consistent with previous evidence in cell mechanotransduction studies using patch clamp. We further combined numerical modeling and 3D confocal imaging with digital volume correlation to analyze cell membrane stress under insonification. We established the relationship between US-induced mechanical effect and cellular bioeffects (Ca2+ signaling via MS channel activation) by a key parameter: the total strain energy, which take accounts of magnitude of stress, volume of cell under stress, and sonification time. Our results suggested that the stress distribution and total strain energy induced by US were strongly correlated to the directions of ARF. We’ve shown that the total strain energy could highly recapitulate the effectiveness of ARF on Piezo1 activation. Overall, we have developed a miniatured, highly compatible and controllable VD-SAW transducer for studying sonogenetics at the single cell level. Our preliminary results provide new insights into the mechanisms of ultrasonic activation of Piezo. By virtue of its dimensions, compatibility, and targetability, the VD-SAW transducer can be readily applied for studying the mechanisms and key parameters underlying the activation of other MS channels by US in various types of cell/neuron. We also expect that VD-SAW can be translated to ex vivo (e.g. brain slice) or in vivo application with the advancement of fabrication and proper compensation of the skull-induced US attenuation.
Item Open Access Development of A Wet-Coupling Device for Shock Wave Lithotripsy(2018) Xiao, MingdaThe primary goal of this study is to verify the applicability of a miniature wet-coupling device specifically designed for shock wave lithotripsy (SWL) and its effect on improving the stone comminution efficiency. Despite the technical and functional improvements implemented in the recent years, modern shock wave lithotripters have failed to re-achieve the treatment outcome of their ancestor, the original Dornier HM3. The defects of the dry-coupling approach used in contemporary lithotripters have been considered as one of the key factors that contribute to their reduced stone fragmentation efficiency. Therefore, this study aims at addressing this drawback by designing and developing a new coupling device to substitute the contemporary dry-coupling device.
The idea of the miniature wet-coupling design is to combine the strengths of the water-bath coupling and the dry coupling to produce a high-quality coupling while still ensuring great user convenience. In this study, the wet-coupling device was designed for a contemporary electromagnetic (EM) lithotripter with an acoustical lens, consisting of a patient-interface component, a water-filled bellow, and a connecting unit in between. Through 3D printing of customized molds and downstream mold casting with polyurethane rubber, these components were built individually and then assembled together. To verify the performance of this wet-coupling device, in vitro stone fragmentation tests and coupling quality tests were performed with two coupling setups on the same EM lithotripter and a PVC torso model to mimic a clinical SWL treatment. Soft cylindrical BegoStone phantoms (10 mm × 10 mm, D × H) were treated by shock waves delivered at a pulse repetition frequency (PRF) = 1.5 Hz and a power output set of E2.5. The coupling interface condition and subsequent changes during the shock wave treatment were captured after every 500 shocks.
The wet-coupling setup has successfully maintained a steady and uniform coupling interface with minimal coupling defects. In contrast, the dry-coupling setup resulted in an initial bubble formation and a subsequent bubble aggregation within the coupling medium that impeded the energy delivery. The wet-coupling setup resulted in a significantly-improved comminution efficiency (41.5% vs. 27.3%) after 2000 shocks. Based on the modular design, the wet-coupling device can be easily modified for other dry-coupling lithotripters and serve as a promising optimization for clinical SWL.
Item Open Access Displacement of particles in microfluidics by laser-generated tandem bubbles.(Appl Phys Lett, 2010-11-01) Lautz, Jaclyn; Sankin, Georgy; Yuan, Fang; Zhong, PeiThe dynamic interaction between laser-generated tandem bubble and individual polystyrene particles of 2 and 10 μm in diameter is studied in a microfluidic channel (25 μm height) by high-speed imaging and particle image velocimetry. The asymmetric collapse of the tandem bubble produces a pair of microjets and associated long-lasting vortices that can propel a single particle to a maximum velocity of 1.4 m∕s in 30 μs after the bubble collapse with a resultant directional displacement up to 60 μm in 150 μs. This method may be useful for high-throughput cell sorting in microfluidic devices.Item Open Access Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy.(Physics of fluids (Woodbury, N.Y. : 1994), 2023-03) Xiang, Gaoming; Li, Daiwei; Chen, Junqin; Mishra, Arpit; Sankin, Georgy; Zhao, Xuning; Tang, Yuqi; Wang, Kevin; Yao, Junjie; Zhong, PeiRecent studies indicate that cavitation may play a vital role in laser lithotripsy. However, the underlying bubble dynamics and associated damage mechanisms are largely unknown. In this study, we use ultra-high-speed shadowgraph imaging, hydrophone measurements, three-dimensional passive cavitation mapping (3D-PCM), and phantom test to investigate the transient dynamics of vapor bubbles induced by a holmium:yttrium aluminum garnet laser and their correlation with solid damage. We vary the standoff distance (SD) between the fiber tip and solid boundary under parallel fiber alignment and observe several distinctive features in bubble dynamics. First, long pulsed laser irradiation and solid boundary interaction create an elongated "pear-shaped" bubble that collapses asymmetrically and forms multiple jets in sequence. Second, unlike nanosecond laser-induced cavitation bubbles, jet impact on solid boundary generates negligible pressure transients and causes no direct damage. A non-circular toroidal bubble forms, particularly following the primary and secondary bubble collapses at SD = 1.0 and 3.0 mm, respectively. We observe three intensified bubble collapses with strong shock wave emissions: the intensified bubble collapse by shock wave, the ensuing reflected shock wave from the solid boundary, and self-intensified collapse of an inverted "triangle-shaped" or "horseshoe-shaped" bubble. Third, high-speed shadowgraph imaging and 3D-PCM confirm that the shock origins from the distinctive bubble collapse form either two discrete spots or a "smiling-face" shape. The spatial collapse pattern is consistent with the similar BegoStone surface damage, suggesting that the shockwave emissions during the intensified asymmetric collapse of the pear-shaped bubble are decisive for the solid damage.Item Open Access Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.(J Acoust Soc Am, 2010-04) Qin, Jun; Simmons, W Neal; Sankin, Georgy; Zhong, PeiUsing a reflector insert, the original HM-3 lithotripter field at 20 kV was altered significantly with the peak positive pressure (p(+)) in the focal plane increased from 49 to 87 MPa while the -6 dB focal width decreased concomitantly from 11 to 4 mm. Using the original reflector, p(+) of 33 MPa with a -6 dB focal width of 18 mm were measured in a pre-focal plane 15-mm proximal to the lithotripter focus. However, the acoustic pulse energy delivered to a 28-mm diameter area around the lithotripter axis was comparable ( approximately 120 mJ). For all three exposure conditions, similar stone comminution ( approximately 70%) was produced in a mesh holder of 15 mm after 250 shocks. In contrast, stone comminution produced by the modified reflector either in a 15-mm finger cot (45%) or in a 30-mm membrane holder (14%) was significantly reduced from the corresponding values (56% and 26%) produced by the original reflector (no statistically significant differences were observed between the focal and pre-focal planes). These observations suggest that a low-pressure/broad focal width lithotripter field will produce better stone comminution than its counterpart with high-pressure/narrow focal width under clinically relevant in vitro comminution conditions.Item Open Access Exploring optimal settings for safe and effective thulium fibre laser lithotripsy in a kidney model.(BJU international, 2024-02) Mishra, Arpit; Medairos, Robert; Chen, Junqin; Soto-Palou, Francois; Wu, Yuan; Antonelli, Jodi; Preminger, Glenn M; Lipkin, Michael E; Zhong, PeiObjectives
To explore the optimal laser settings and treatment strategies for thulium fibre laser (TFL) lithotripsy, namely, those with the highest treatment efficiency, lowest thermal injury risk, and shortest procedure time.Materials and methods
An in vitro kidney model was used to assess the efficacy of TFL lithotripsy in the upper calyx. Stone ablation experiments were performed on BegoStone phantoms at different combinations of pulse energy (EP ) and frequency (F) to determine the optimal settings. Temperature changes and thermal injury risks were monitored using embedded thermocouples. Experiments were also performed on calcium oxalate monohydrate (COM) stones to validate the optimal settings.Results
High EP /low F settings demonstrated superior treatment efficiency compared to low EP /high F settings using the same power. Specifically, 0.8 J/12 Hz was the optimal setting, resulting in a twofold increase in treatment efficiency, a 39% reduction in energy expenditure per unit of ablated stone mass, a 35% reduction in residual fragments, and a 36% reduction in total procedure time compared to the 0.2 J/50 Hz setting for COM stones. Thermal injury risk assessment indicated that 10 W power settings with high EP /low F combinations remained below the threshold for tissue injury, while higher power settings (>10 W) consistently exceeded the safety threshold.Conclusions
Our findings suggest that high EP /low F settings, such as 0.8 J/12 Hz, are optimal for TFL lithotripsy in the treatment of COM stones. These settings demonstrated significantly improved treatment efficiency with reduced residual fragments compared to conventional settings while keeping the thermal dose below the injury threshold. This study highlights the importance of using the high EP /low F combination with low power settings, which maximizes treatment efficiency and minimizes potential thermal injury. Further studies are warranted to determine the optimal settings for TFL for treating kidney stones with different compositions.Item Open Access Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter.(Proc Natl Acad Sci U S A, 2014-04-01) Neisius, Andreas; Smith, Nathan B; Sankin, Georgy; Kuntz, Nicholas John; Madden, John Francis; Fovargue, Daniel E; Mitran, Sorin; Lipkin, Michael Eric; Simmons, Walter Neal; Preminger, Glenn M; Zhong, PeiThe efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The -6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters.Item Open Access In vitro investigation of stone ablation efficiency, char formation, spark generation, and damage mechanism produced by thulium fiber laser.(Urolithiasis, 2023-11) Chen, Junqin; Mishra, Arpit; Medairos, Robert; Antonelli, Jodi; Preminger, Glenn M; Lipkin, Michael E; Zhong, PeiTo investigate stone ablation characteristics of thulium fiber laser (TFL), BegoStone phantoms were spot-treated in water at various fiber tip-to-stone standoff distances (SDs, 0.5 ~ 2 mm) over a broad range of pulse energy (Ep, 0.2 ~ 2 J), frequency (F, 5 ~ 150 Hz), and power (P, 10 ~ 30 W) settings. In general, the ablation speed (mm3/s) in BegoStone decreased with SD and increased with Ep, reaching a peak around 0.8 ~ 1.0 J. Additional experiments with calcium phosphate (CaP), uric acid (UA), and calcium oxalate monohydrate (COM) stones were conducted under two distinctly different settings: 0.2 J/100 Hz and 0.8 J/12 Hz. The concomitant bubble dynamics, spark generation and pressure transients were analyzed. Higher ablation speeds were consistently produced at 0.8 J/12 Hz than at 0.2 J/100 Hz, with CaP stones most difficult yet COM and UA stones easier to ablate. Charring was mostly observed in CaP stones at 0.2 J/100 Hz, accompanied by strong spark-generation, explosive combustion, and diminished pressure transients, but not at 0.8 J/12 Hz. By treating stones in parallel fiber orientation and leveraging the proximity effect of a ureteroscope, the contribution of bubble collapse to stone ablation was found to be substantial (16% ~ 59%) at 0.8 J/12 Hz, but not at 0.2 J/100 Hz. Overall, TFL ablation efficiency is significantly better at high Ep/low F setting, attributable to increased cavitation damage with less char formation.Item Open Access M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer.(PLoS One, 2012) Huang, Xiaoyi; Yuan, Fang; Liang, Meihua; Lo, Hui-Wen; Shinohara, Mari L; Robertson, Cary; Zhong, PeiOBJECTIVE: In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. METHODS: RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. RESULTS: No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. CONCLUSION: Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers.Item Open Access Mechanisms of Stone Fragmentation Produced by Nano Pulse Lithotripsy (NPL)(2017) Yang, ChenNano Pulse Lithotripter (NPL) is a new technology in intracorporeal lithotripsy. It utilizes a high-voltage spark discharge of about 30-nanosecond duration, released at the tip of a flexible probe under endoscopic guidance, to break up kidney stones into fine powders for spontaneous discharge. Several primary damage patterns have been observed during the NPL treatment of hard and soft BegoStones: crater formation near the probe tip, crack development from the distal wall of the stone, and crack initiation in the form of radial and ring-shape circumferential fracture in the proximal surface of stones of small sizes. Compared to the traditional intracorporeal lithotripsy technologies (laser and EHL), NPL has been shown to comminute kidney stones with higher efficiency, especially with hard stones, although its working mechanisms are largely unclear. Multiple potential contributory factors have been proposed: direct dielectric breakdown in the stone material near the NPL probe tip, shock wave induced by the spark discharge in the fluid, and cavitation and resultant asymmetric collapse of bubbles. Various experiments have been carried out to correlate each of the proposed mechanisms with the damage patterns observed. Comparison between micro-CT images of the damage initiation sites and COMSOL simulation of the stress field in the stone indicate that the observed cracks are most likely to be produced by the locally intensified tensile stresses associated with the surface acoustic waves (SAW) generated by the incidence of the spark-generated, spherically divergent shock wave on the proximal surface of the stone, and/or their interactions with bulk acoustic waves (P or S) upon reflection from the stone boundaries. Dielectric breakdown is found to potentially contribute to crater formation, especially for soft BegoStones. However, the contribution of cavitation to stone fragmentation in NPL appears to be minimal.
Item Open Access Nanosecond Shock Wave-Induced Surface Acoustic Waves and Fracture at Fluid-Solid(2018) Zhang, YingI investigate the generation and propagation characteristics of leaky Rayleigh waves (LRWs) by a spherical shock wave incident on a glass-water boundary both experimentally and numerically. The maximum tensile stress produced on the solid boundary was attributed to the dynamic interaction between the LRWs and an evanescent wave generated concomitantly along the boundary. The resultant tensile stress field drives the initiation of pre-existing microcracks and their subsequent extension along a circular trajectory, confirmative with the direction of the principal stress on the boundary. We further demonstrated that this unique ring-like fracture, prevalent in damage produced by high-speed impact, can be best described by the Tuler-Butcher criterion for dynamic brittle failure, and the orientation of the ring fracture extension into the solid also follows closely the trajectory of the local maximum tensile stress distribution.
Item Open Access Non-axisymmetric and Steerable Acoustic Field for Enhanced Stone Comminution in Shock Wave Lithotripsy(2014) Lautz, Jaclyn MaryThe primary goal of this dissertation was to assess the feasibility of transforming an electromagnetic (EM) shock wave lithotripter with an acoustic lens as its focusing device from the original axisymmetric pressure distribution to a non-axisymmetric steerable acoustic field. This work was motivated by the desire to better match the distribution of effective acoustic pressure and pulse energy with the trajectory and anatomical features around renal and ureteral calculi during clinical shock wave lithotripsy (SWL). The acoustic field transformation was accomplished by the design of a fan-shaped acoustic barrier (mask) placed on top of the lithotripter acoustic lens to selectively reduce the source aperture along the direction of the barrier axis, therefore effectively broadening the beam width (BW) of the lithotripter field in this preferred direction. Moreover, the geometry of the original lens (L1) was modified so that the acoustic focus of the new lens (L2) at high output voltages (necessitated by the incorporation of the mask) is closely aligned with the lithotripter focus. The mask was further driven by a motor-controlled gear system to rotate around the lithotripter axis, generating a steerable and non-axisymmetric acoustic field. In this dissertation project, a linear acoustic model was first used for parametric studies to assess the effects of mask geometry (opening angle and thickness) on beam elongation and peak pressure reduction. Based on this analysis, two mask geometries (L2+M8025 and L2+M9030) were selected for modest and maximum beam elongation within the acceptable output range of the shock wave source. The acoustic and cavitation fields of the new lens with masks, as well as the corresponding field produced by the original lens, were characterized using fiber optical probe hydrophone measurements and stereoscopic high-speed imaging. Different output voltage settings were used for each lens configuration (i.e., 14 kV for L1, 15.8 kV for L2+M8025, and 17 kV L2+M9030) to produce equivalent acoustic pulse energy of 45 mJ in all setups, measured in the lithotripter focal plane. Under this condition, L2+M8025 and L2+M9030 generate lower peak pressure (38.2 and 36.8 MPa) with a significantly broadened BWy (11.4 and 14.3 mm) along the y-axis (head-to-toe direction of the patient), which is aligned with the mask axis, compared to the high peak pressure (44.1 MPa) and moderate BW (7.5 mm) of L1. It is worth noting that L2+M8025 and L2+M9030 produce a BWx (7.6 and 7.5 mm) in the orthogonal direction to the mask axis, which is also comparable to L1. Similarly, the beam width of the cavitation field was broadened from 8.1 to 12.2 mm for L2+M8025, and from 10.9 to 17.9 mm for L2+M9030, compared to the range of 8.8 to 9.4 mm measured from L1. In comparison, L2+M8025 produces a denser and narrower bubble cloud along the y-axis than L2+M9030. In vitro stone comminution (SC) tests in a tube holder (Diameter = 14 mm) have demonstrated that L2+M8025 and L2+M9030 are more effective at off-axis positions and during simulated respiratory motion along the elongated beam direction. The results of SC also confirmed the correlation between SC and the average peak pressure, p+(avg), and effective acoustic pulse energy, Eeft, delivered to the stone, as shown in previous studies. Furthermore, a ureter model was developed and used to assess the performance of L2+M9030, which has the maximally elongated BW under various static and simulated respiratory motion conditions. The results suggest that L2+M9030 can produce significantly better SC than L1 when the elongated beam is effectively aligned with the stone/fragments in the ureter or with their motion trajectory during the course of SWL treatment. Altogether, the results of this dissertation work have demonstrated in vitro that a non-axisymmetric and steerable acoustic field can significantly enhance stone comminution under clinically relevant SWL conditions. Future work is warranted to optimize the mask design and steering protocol to maximize the benefit of such an adaptable and versatile design to improve the performance and safety of clinical EM lithotripters.
Item Open Access Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency.(J Endourol, 2011-09) Yong, Daniel Z; Lipkin, Michael E; Simmons, W Neal; Sankin, Georgy; Albala, David M; Zhong, Pei; Preminger, Glenn MBACKGROUND AND PURPOSE: Previous studies have demonstrated that treatment strategy plays a critical role in ensuring maximum stone fragmentation during shockwave lithotripsy (SWL). We aimed to develop an optimal treatment strategy in SWL to produce maximum stone fragmentation. MATERIALS AND METHODS: Four treatment strategies were evaluated using an in-vitro experimental setup that mimics stone fragmentation in the renal pelvis. Spherical stone phantoms were exposed to 2100 shocks using the Siemens Modularis (electromagnetic) lithotripter. The treatment strategies included increasing output voltage with 100 shocks at 12.3 kV, 400 shocks at 14.8 kV, and 1600 shocks at 15.8 kV, and decreasing output voltage with 1600 shocks at 15.8 kV, 400 shocks at 14.8 kV, and 100 shocks at 12.3 kV. Both increasing and decreasing voltages models were run at a pulse repetition frequency (PRF) of 1 and 2 Hz. Fragmentation efficiency was determined using a sequential sieving method to isolate fragments less than 2 mm. A fiberoptic probe hydrophone was used to characterize the pressure waveforms at different output voltage and frequency settings. In addition, a high-speed camera was used to assess cavitation activity in the lithotripter field that was produced by different treatment strategies. RESULTS: The increasing output voltage strategy at 1 Hz PRF produced the best stone fragmentation efficiency. This result was significantly better than the decreasing voltage strategy at 1 Hz PFR (85.8% vs 80.8%, P=0.017) and over the same strategy at 2 Hz PRF (85.8% vs 79.59%, P=0.0078). CONCLUSIONS: A pretreatment dose of 100 low-voltage output shockwaves (SWs) at 60 SWs/min before increasing to a higher voltage output produces the best overall stone fragmentation in vitro. These findings could lead to increased fragmentation efficiency in vivo and higher success rates clinically.Item Open Access Probing the Bioeffects of Cavitation at the Single-Cell Level(2013) Yuan, FangThe primary goal of this dissertation research is to develop an experimental system and associated techniques that can be used to investigate the bioeffects produced by cavitation bubbles at the single cell level. Such information has been lacking due to the randomness and complexity in cavitation inception and subsequent bubble-bubble interaction generated by an acoustic field typically used in therapeutic ultrasound applications. Connection between cavitation activities and bioeffects produced in cells nearby presents another challenge that has not been resolved satisfactorily. In this work, we developed a laser-based system for generating tandem bubbles with a maximum diameter about 50 µm (i.e., on the scale of a single cell) in a microfluidic channel of 25 µm in height and 800 µm in width. We further developed techniques for micropatterning of individual gold dots (15 nm thick and 6 µm in diameter) used for bubble generation, which are precisely aligned at various stand-off distances (SD) from individual islands (32 x32 µm2) coated with fibronectin used for cell adhesion. The dynamics of tandem bubble interaction with resultant jet formation, microstreaming and vortex flow in the microfluidic channel were captured by high-speed imaging and particle image velocimetry (PIV). The deformation of the target cell was recorded by high-speed imaging as well (using a second camera) immediately after the tandem bubble interaction and assessment of membrane strain was aided with 2 µm sized polystyrene beads attached to the cell membrane. Membrane poration was characterized by uptake of fluorescent propodium iodide (PI) into the target cell, from which the normalized maximum pore size was estimated. Using this experimental system, we have observed the complete process of bubble-bubble interaction with resultant jetting flow, cell deformation, and localized pinpoint membrane rupture with progressive diffusion of macromolecules into the target cell. Furthermore, we observed a clear SD dependence in the treatment outcome produced by the tandem bubbles. At short SD of 10 µm, all treated cells underwent necrosis with high yet unsaturated level of PI uptake, indicating that the cell could not reseal the poration site. At intermediate SD of 20 ~ 30 µm, 58% to 80% of the cells were observed to have repairable membrane poration with low to medium but saturated level of PI uptake. At long SD of 40 µm, no detectable PI uptake was observed, corresponding to no membrane compromise. Within the repairable membrane poration group, the sub-population of cells that eventually survived without apoptosis increased from about 9% at SD of 20 µm with strong adhesion to about 70% at SD of 30 µm with no adhesion at the leading edge facing the jetting flow. The maximum PI uptake, pore size, and membrane strain estimated could vary by more than an order of magnitude, which is similar to the magnitude of variations in pore size (0.2 ~ 2 µm) produced by tandem bubbles observed by SEM. The large principal strain (> 500%) with associated high strain-rate (> 106*s-1) produced by the tandem bubbles provide a unique tool to examine the bioeffects of cavitation at the single cell level and potentially a diverse range of applications to be explored.
Item Open Access The Effect of Surface Flaws on Nanosecond Shock Wave Induced Brittle Fracture(2020) Chen, JunqinNano pulse lithotripsy (NPL) is a novel medical technology to fragment urinary calculi through electrical discharge. Compared with traditional shock wave lithotripters utilizing focused shock waves, NPL is ideal for investigating the stress field induced by surface acoustic waves (SAWs), such as the leaky Raleigh waves (LRWs), on the fluid-solid boundary. A pioneering study has recently demonstrated the generation of LRWs induced by the spherically divergent shock wave at the borosilicate glass-water boundary in NPL treatment. The resultant tensile stress field was found to play an important role in the initiation of cracks and the formation of ring-like fracture on the glass surfaces. This prior work motivates us to investigate the effect of SAWs on surface flaws that can be artificially and controllably created on the glass surface by microindentations to mimic the surface erosion induced by cavitation. In this study, we used a microhardness tester with a Vickers indenter and applied a load of 1.0 kg with a dwell time of 10 s to produce indentations at various radial distances (1.0 mm, 1.5 mm, 2.0 mm and 2.5 mm) on the borosilicate glass samples (50 x 50 x 3.3 mm in LxWxH). Each indentation creates a pyramid shaped impression with an average diagonal length of 55 m and penetration depth of 7.8 m. At a standoff distance of 1.5 mm, the shock waves generated by the NPL probe were applied to the glass surface until the glass was broken. After each shock impact, the crack initiation and extension around each indentation site were recorded, from which the speed of crack development represented by the arc length per shock was calculated. Through these experiments, we have made the following important observations. First, the artificially induced surface flaws made by the microindentation can well control the location of the crack initiation since the presence of surface flaws will significantly weaken the glass surface. Under the effect of the maximum tensile stress (σ_(T,max)) generated by NPL shock wave impact, the cracks extending from the indentation impression site are predominantly aligned perpendicular to the direction of LRWs (which is also the direction of σ_(T,max)). Second, compared with the number of shocks required to initiate the ring-like fracture on the original (untreated) glass surface, fewer shock waves are needed to initiate the ring-like crack formation and extension from the impression site presumably due to the higher stress concentration built up at the tip of the surface flaws during NPL, which can greatly reduce the tensile stress or stress integral required to initiate a crack. The average speed of ring-like fracture formation at a radial distance about 1.5 mm is 0.26 mm per shock on the glass without microindentations. By contrast, the average speed of crack extension at the same radial distance with microindentations can increase to 0.34 mm per shock. Furthermore, the speed of crack extension varies with the radial distance of the microindentation from the NPL probe axis, largely following the variation of the local tensile stress integral generated by the LRWs. Altogether, these findings suggest potential synergy between shock wave-induced LRWs and surface flaws (e.g., produced by cavitation erosion pitting during shock wave lithotripsy) that may lead to improved stone comminution, which warrants future investigations.
Item Open Access Three-dimensional super-resolution passive cavitation mapping in laser lithotripsy(IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024-01-01) Li, Daiwei; Wang, Nanchao; Li, Mucong; Mishra, Arpit; Tang, Yuqi; Vu, Tri; Xiang, Gaoming; Chen, Junqin; Lipkin, Michael; Zhong, Pei; Yao, JunjieKidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with the stone damage in LL. Monitoring the cavitation activities during LL is thus crucial to optimizing the stone damage and maximizing LL efficiency. In this study, we have developed three-dimensional super-resolution passive cavitation mapping (3D-SRPCM), in which the cavitation bubble positions can be localized with an accuracy of 40 μm, which is 1/10th of the acoustic diffraction limit. Moreover, the 3D-SRPCM reconstruction speed has been improved by 300 times by adopting a GPU-based sparse-matrix beamforming approach. Using 3D-SRPCM, we studied LL-induced cavitation activities on BegoStones, both in free space of water and confined space of a kidney phantom. The dose-dependence analysis provided by 3D-SRPCM revealed that accumulated impact pressure on the stone surface has the highest correlation with the stone damage. By providing high-resolution cavitation mapping during LL treatment, we expect that 3D-SRPCM may become a powerful tool to improve the clinical LL efficiency and patient outcome.