Browsing by Author "Zhou, Ye"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies.(Cell, 2021-05-18) Williams, Wilton B; Meyerhoff, R Ryan; Edwards, RJ; Li, Hui; Manne, Kartik; Nicely, Nathan I; Henderson, Rory; Zhou, Ye; Janowska, Katarzyna; Mansouri, Katayoun; Gobeil, Sophie; Evangelous, Tyler; Hora, Bhavna; Berry, Madison; Abuahmad, A Yousef; Sprenz, Jordan; Deyton, Margaret; Stalls, Victoria; Kopp, Megan; Hsu, Allen L; Borgnia, Mario J; Stewart-Jones, Guillaume BE; Lee, Matthew S; Bronkema, Naomi; Moody, M Anthony; Wiehe, Kevin; Bradley, Todd; Alam, S Munir; Parks, Robert J; Foulger, Andrew; Oguin, Thomas; Sempowski, Gregory D; Bonsignori, Mattia; LaBranche, Celia C; Montefiori, David C; Seaman, Michael; Santra, Sampa; Perfect, John; Francica, Joseph R; Lynn, Geoffrey M; Aussedat, Baptiste; Walkowicz, William E; Laga, Richard; Kelsoe, Garnett; Saunders, Kevin O; Fera, Daniela; Kwong, Peter D; Seder, Robert A; Bartesaghi, Alberto; Shaw, George M; Acharya, Priyamvada; Haynes, Barton FNatural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.Item Open Access Structure and dynamics of the Arabidopsis O-fucosyltransferase SPINDLY.(Nature communications, 2023-03) Kumar, Shivesh; Wang, Yan; Zhou, Ye; Dillard, Lucas; Li, Fay-Wei; Sciandra, Carly A; Sui, Ning; Zentella, Rodolfo; Zahn, Emily; Shabanowitz, Jeffrey; Hunt, Donald F; Borgnia, Mario J; Bartesaghi, Alberto; Sun, Tai-Ping; Zhou, PeiSPINDLY (SPY) in Arabidopsis thaliana is a novel nucleocytoplasmic protein O-fucosyltransferase (POFUT), which regulates diverse developmental processes. Sequence analysis indicates that SPY is distinct from ER-localized POFUTs and contains N-terminal tetratricopeptide repeats (TPRs) and a C-terminal catalytic domain resembling the O-linked-N-acetylglucosamine (GlcNAc) transferases (OGTs). However, the structural feature that determines the distinct enzymatic selectivity of SPY remains unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of SPY and its complex with GDP-fucose, revealing distinct active-site features enabling GDP-fucose instead of UDP-GlcNAc binding. SPY forms an antiparallel dimer instead of the X-shaped dimer in human OGT, and its catalytic domain interconverts among multiple conformations. Analysis of mass spectrometry, co-IP, fucosylation activity, and cryo-EM data further demonstrates that the N-terminal disordered peptide in SPY contains trans auto-fucosylation sites and inhibits the POFUT activity, whereas TPRs 1-5 dynamically regulate SPY activity by interfering with protein substrate binding.