Browsing by Author "Zhu, Dakai"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Functional Variants in Notch Pathway Genes NCOR2, NCSTN, and MAML2 Predict Survival of Patients with Cutaneous Melanoma.(Cancer Epidemiol Biomarkers Prev, 2015-07) Zhang, Weikang; Liu, Hongliang; Liu, Zhensheng; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Wei, QingyiBACKGROUND: The Notch signaling pathway is constitutively activated in human cutaneous melanoma to promote growth and aggressive metastatic potential of primary melanoma cells. Therefore, genetic variants in Notch pathway genes may affect the prognosis of cutaneous melanoma patients. METHODS: We identified 6,256 SNPs in 48 Notch genes in 858 cutaneous melanoma patients included in a previously published cutaneous melanoma genome-wide association study dataset. Multivariate and stepwise Cox proportional hazards regression and false-positive report probability corrections were performed to evaluate associations between putative functional SNPs and cutaneous melanoma disease-specific survival. Receiver operating characteristic curve was constructed, and area under the curve was used to assess the classification performance of the model. RESULTS: Four putative functional SNPs of Notch pathway genes had independent and joint predictive roles in survival of cutaneous melanoma patients. The most significant variant was NCOR2 rs2342924 T>C (adjusted HR, 2.71; 95% confidence interval, 1.73-4.23; Ptrend = 9.62 × 10(-7)), followed by NCSTN rs1124379 G>A, NCOR2 rs10846684 G>A, and MAML2 rs7953425 G>A (Ptrend = 0.005, 0.005, and 0.013, respectively). The receiver operating characteristic analysis revealed that area under the curve was significantly increased after adding the combined unfavorable genotype score to the model containing the known clinicopathologic factors. CONCLUSIONS: Our results suggest that SNPs in Notch pathway genes may be predictors of cutaneous melanoma disease-specific survival. IMPACT: Our discovery offers a translational potential for using genetic variants in Notch pathway genes as a genotype score of biomarkers for developing an improved prognostic assessment and personalized management of cutaneous melanoma patients.Item Open Access Genetic variants in ELOVL2 and HSD17B12 predict melanoma-specific survival.(International journal of cancer, 2019-02-08) Dai, Wei; Liu, Hongliang; Xu, Xinyuan; Ge, Jie; Luo, Sheng; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Li, Xin; Nan, Hongmei; Li, Chunying; Wei, QingyiFatty acids play a key role in cellular bioenergetics, membrane biosynthesis and intracellular signaling processes and thus may be involved in cancer development and progression. In the present study, we comprehensively assessed associations of 14,522 common single-nucleotide polymorphisms (SNPs) in 149 genes of the fatty-acid synthesis pathway with cutaneous melanoma disease-specific survival (CMSS). The dataset of 858 cutaneous melanoma (CM) patients from a published genome-wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used as the discovery dataset, and the identified significant SNPs were validated by a dataset of 409 CM patients from another GWAS from the Nurses' Health and Health Professionals Follow-up Studies. We found 40 noteworthy SNPs to be associated with CMSS in both discovery and validation datasets after multiple comparison correction by the false positive report probability method, because more than 85% of the SNPs were imputed. By performing functional prediction, linkage disequilibrium analysis, and stepwise Cox regression selection, we identified two independent SNPs of ELOVL2 rs3734398 T>C and HSD17B12 rs11037684 A>G that predicted CMSS, with an allelic hazards ratio of 0.66 (95% confidence interval = 0.51-0.84 and p = 8.34 × 10-4 ) and 2.29 (1.55-3.39 and p = 3.61 × 10-5 ), respectively. Finally, the ELOVL2 rs3734398 variant CC genotype was found to be associated with a significantly increased mRNA expression level. These SNPs may be potential markers for CM prognosis, if validated by additional larger and mechanistic studies.Item Open Access Genetic variants in fanconi anemia pathway genes BRCA2 and FANCA predict melanoma survival.(The Journal of investigative dermatology, 2015-02) Yin, Jieyun; Liu, Hongliang; Liu, Zhensheng; Wang, Li-E; Chen, Wei V; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Wei, QingyiCutaneous melanoma (CM) is the most lethal skin cancer. The Fanconi anemia (FA) pathway involved in DNA crosslink repair may affect CM susceptibility and prognosis. Using data derived from published genome-wide association study, we comprehensively analyzed the associations of 2,339 common single-nucleotide polymorphisms (SNPs) in 14 autosomal FA genes with overall survival (OS) in 858 CM patients. By performing false-positive report probability corrections and stepwise Cox proportional hazards regression analyses, we identified significant associations between CM OS and four putatively functional SNPs: BRCA2 rs10492396 (AG vs. GG: adjusted hazard ratio (adjHR)=1.85, 95% confidence interval (CI)=1.16-2.95, P=0.010), rs206118 (CC vs. TT+TC: adjHR=2.44, 95% CI=1.27-4.67, P=0.007), rs3752447 (CC vs. TT+TC: adjHR=2.10, 95% CI=1.38-3.18, P=0.0005), and FANCA rs62068372 (TT vs. CC+CT: adjHR=1.85, 95% CI=1.27-2.69, P=0.001). Moreover, patients with an increasing number of unfavorable genotypes (NUG) of these loci had markedly reduced OS and melanoma-specific survival (MSS). The final model incorporating with NUG, tumor stage, and Breslow thickness showed an improved discriminatory ability to classify both 5-year OS and 5-year MSS. Additional investigations, preferably prospective studies, are needed to validate our findings.Item Open Access Genetic variants in RORA and DNMT1 associated with cutaneous melanoma survival.(International journal of cancer, 2018-06) Li, Bo; Wang, Yanru; Xu, Yinghui; Liu, Hongliang; Bloomer, Wendy; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Li, Xin; Han, Jiali; Wei, QingyiCutaneous melanoma (CM) is considered as a steroid hormone-related malignancy. However, few studies have evaluated the roles of genetic variants encoding steroid hormone receptor genes and their related regulators (SHR-related genes) in CM-specific survival (CMSS). Here, we performed a pathway-based analysis to evaluate genetic variants of 191 SHR-related genes in 858 CMSS patients using a dataset from a genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC), and then validated the results in an additional dataset of 409 patients from the Harvard GWAS. Using multivariate Cox proportional hazards regression analysis, we identified three-independent SNPs (RORA rs782917 G > A, RORA rs17204952 C > T and DNMT1 rs7253062 G > A) as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) and 95% confidence interval of 1.62 (1.25-2.09), 1.60 (1.20-2.13) and 1.52 (1.20-1.94), respectively. Combined analysis of risk genotypes of these three SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (ptrend < 0.001); however, no improvement in the prediction model was observed (area under the curve [AUC] = 79.6-80.8%, p = 0.656), when these risk genotypes were added to the model containing clinical variables. Our findings suggest that genetic variants of RORA and DNMT1 may be promising biomarkers for CMSS, but these results needed to be validated in future larger studies.Item Open Access Genetic variants in the calcium signaling pathway genes are associated with cutaneous melanoma-specific survival.(Carcinogenesis, 2018-12-29) Wang, Xiaomeng; Liu, Hongliang; Xu, Yinghui; Xie, Jichun; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Li, Xin; Nan, Hongmei; Song, Yanqiu; Wei, QingyiRemodeling or deregulation of the calcium signaling pathway is a relevant hallmark of cancer including cutaneous melanoma (CM). In the present study, using data from a published genome-wide association study (GWAS) from The University of Texas M.D. Anderson Cancer Center, we assessed the role of 41,377 common single nucleotide polymorphisms (SNPs) of 167 calcium signaling pathway genes in CM survival. We used another GWAS from Harvard University as the validation dataset. In the single-locus analysis, 1,830 SNPs were found to be significantly associated with CM-specific survival (CMSS) (P ≤ 0.050 and false-positive report probability ≤ 0.2), of which nine SNPs were validated in the Harvard study (P ≤ 0.050). Among these, three independent SNPs (i.e., PDE1A rs6750552 T>C, ITPR1 rs6785564 A>G and RYR3 rs2596191 C>A) had a predictive role in CMSS, with a meta-analysis derived hazards ratio (HR) of 1.52 [95% confidence interval (CI) = 1.19-1.94, P = 7.21×10-4]], 0.49 (0.33-0.73, 3.94×10-4) and 0.67 (0.53-0.86, 0.0017), respectively. Patients with an increasing number of protective genotypes had remarkably improved CMSS. Additional expression quantitative trait loci (eQTL) analysis showed that these genotypes were also significantly associated with mRNA expression levels of the genes. Taken together, these results may help us to identify prospective biomarkers in the calcium signaling pathway for CM prognosis.Item Open Access Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival.(Molecular carcinogenesis, 2018-01) Xu, Yinghui; Wang, Yanru; Liu, Hongliang; Shi, Qiong; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Hyslop, Terry; Li, Xin; Han, Jiali; Wei, QingyiMetzincins are key molecules in the degradation of the extracellular matrix and play an important role in cellular processes such as cell migration, adhesion, and cell fusion of malignant tumors, including cutaneous melanoma (CM). We hypothesized that genetic variants of the metzincin metallopeptidase family genes would be associated with CM-specific survival (CMSS). To test this hypothesis, we first performed Cox proportional hazards regression analysis to evaluate the associations between genetic variants of 75 metzincin metallopeptidase family genes and CMSS using the dataset from the genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC) which included 858 non-Hispanic white patients with CM, and then validated using the dataset from the Harvard GWAS study which had 409 non-Hispanic white patients with invasive CM. Four independent SNPs (MMP16 rs10090371 C>A, ADAMTS3 rs788935 T>C, TLL2 rs10882807 T>C and MMP9 rs3918251 A>G) were identified as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) of 1.73 (1.32-2.29, 9.68E-05), 1.46 (1.15-1.85, 0.002), 1.68 (1.31-2.14, 3.32E-05) and 0.67 (0.51-0.87, 0.003), respectively, in the meta-analysis of these two GWAS studies. Combined analysis of risk genotypes of these four SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (Ptrend < 0.001). An improvement was observed in the prediction model (area under the curve [AUC] = 81.4% vs. 78.6%), when these risk genotypes were added to the model containing non-genotyping variables. Our findings suggest that these genetic variants may be promising prognostic biomarkers for CMSS.Item Open Access Genetic variants of PDGF signaling pathway genes predict cutaneous melanoma survival.(Oncotarget, 2017-09) Li, Hong; Wang, Yanru; Liu, Hongliang; Shi, Qiong; Li, Hongyu; Wu, Wenting; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Li, Yi; Han, Jiali; Wei, QingyiTo investigate whether genetic variants of platelet-derived growth factor (PDGF) signaling pathway genes are associated with survival of cutaneous melanoma (CM) patients, we assessed associations of single-nucleotide polymorphisms in PDGF pathway with melanoma-specific survival in 858 CM patients of M.D. Anderson Cancer Center (MDACC). Additional data of 409 cases from Harvard University were also included for further analysis. We identified 13 SNPs in four genes (COL6A3, NCK2, COL5A1 and PRKCD) with a nominal P < 0.05 and false discovery rate (FDR) < 0.2 in MDACC dataset. Based on linkage disequilibrium, functional prediction and minor allele frequency, a representative SNP in each gene was selected. In the meta-analysis using MDACC and Harvard datasets, there were two SNPs associated with poor survival of CM patients: rs6707820 C>T in NCK2 (HR = 1.87, 95% CI = 1.35-2.59, Pmeta= 1.53E-5); and rs2306574 T>C in PRKCD (HR = 1.73, 95% CI = 1.33-2.24, Pmeta= 4.56E-6). Moreover, CM patients in MDACC with combined risk genotypes of these two loci had markedly poorer survival (HR = 2.47, 95% CI = 1.58-3.84, P < 0.001). Genetic variants of rs6707820 C>T in NCK2 and rs2306574 T>C in PRKCD of the PDGF signaling pathway may be biomarkers for melanoma survival.Item Open Access Polymorphisms of nucleotide excision repair genes predict melanoma survival.(The Journal of investigative dermatology, 2013-07) Li, Chunying; Yin, Ming; Wang, Li-E; Amos, Christopher I; Zhu, Dakai; Lee, Jeffrey E; Gershenwald, Jeffrey E; Grimm, Elizabeth A; Wei, QingyiMelanoma is the most highly malignant skin cancer, and nucleotide excision repair (NER) is involved in melanoma susceptibility. In this analysis of 1,042 melanoma patients, we evaluated whether genetic variants of NER genes may predict survival outcome of melanoma patients. We used genotyping data of 74 tagging single-nucleotide polymorphisms (tagSNPs) in eight core NER genes from our genome-wide association study (including two in XPA, 14 in XPC, three in XPE, four in ERCC1, 10 in ERCC2, eight in ERCC3, 14 in ERCC4, and 19 in ERCC5) and evaluated their associations with prognosis of melanoma patients. Using the Cox proportional hazards model and Kaplan-Meier analysis, we found a predictive role of XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871 SNPs in the prognosis of melanoma patients (rs28720291: AG vs. GG, adjusted hazard ratio (adjHR)=11.2, 95% confidence interval (CI) 3.04-40.9, P=0.0003; rs4150314: AG vs. GG, adjHR=4.76, 95% CI 1.09-20.8, P=0.038; rs2470458: AA vs. AG/GG, adjHR=2.11, 95% CI 1.03-4.33, P=0.040; and rs50871: AA vs. AC/CC adjHR=2.27, 95% CI 1.18-4.35, P=0.015). Patients with an increasing number of unfavorable genotypes had markedly increased death risk. Genetic variants of NER genes, particularly XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871, may independently or jointly modulate survival outcome of melanoma patients. Because our results were based on a median follow-up of 3 years without multiple test corrections, additional large prospective studies are needed to confirm our findings.